Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.
View Article and Find Full Text PDFThere is great potential for the use of terrestrial laser scanning (TLS) to quantify aspects of habitat structure in the study of animal ecology and behaviour. Viewsheds-the area visible from a given position-influence an animal's perception of risk and ability to respond to potential danger. The management and conservation of large herbivores and their habitats can benefit greatly from understanding how vegetation structure shapes viewsheds and influences animal activity patterns and foraging behaviour.
View Article and Find Full Text PDFThe gap fraction (GF) of vegetative canopies is an important property related to the contained bulk of reproductive elements and woody facets within the tree crown volume. This work was developed from the perspectives of porous media theory and computer graphics techniques, considering the vegetative elements in the canopy as a solid matrix and treating the gaps between them as pores to guide volume-based GF calculations. Woody components and individual leaves were extracted from terrestrial laser scanning data.
View Article and Find Full Text PDFDengue fever is increasing in geographical range, spread by invasion of its vector mosquitoes. The trade in second-hand tires has been implicated as a factor in this process because they act as mobile reservoirs of mosquito eggs and larvae. Regional transportation of tires can create linkages between rural areas with dengue and disease-free urban areas, potentially giving rise to outbreaks even in areas with strong local control measures.
View Article and Find Full Text PDFPlant sizes within populations often exhibit multimodal distributions, even when all individuals are the same age and have experienced identical conditions. To establish the causes of this, we created an individual-based model simulating the growth of trees in a spatially explicit framework, which was parametrized using data from a long-term study of forest stands in New Zealand. First, we demonstrate that asymmetric resource competition is a necessary condition for the formation of multimodal size distributions within cohorts.
View Article and Find Full Text PDFCoexistence of apparently similar species remains an enduring paradox in ecology. Spatial structure has been predicted to enable coexistence even when population-level models predict competitive exclusion if it causes each species to limit its own population more than that of its competitor. Nevertheless, existing hypotheses conflict with regard to whether clustering favours or precludes coexistence.
View Article and Find Full Text PDFThere is a lack of quantitative information on the effectiveness of selective-logging practices in ameliorating effects of logging on faunal communities. We conducted a large-scale replicated field study in 3 selectively logged moist semideciduous forests in West Africa at varying times after timber extraction to assess post logging effects on amphibian assemblages. Specifically, we assessed whether the diversity, abundance, and assemblage composition of amphibians changed over time for forest-dependent species and those tolerant of forest disturbance.
View Article and Find Full Text PDFTree seedlings in tropical rain forests are subject to both damage from natural enemies and intense interspecific competition. This leads to a trade-off in investment between defense and growth, and it is likely that tree species specialized to particular habitats tailor this balance to correspond with local resource availability. It has also been suggested that differential herbivore impacts among tree species may drive habitat segregation, favoring species adapted to particular resource conditions.
View Article and Find Full Text PDFLateralization of the brain has traditionally been considered a specialization that is confined to the vertebrates, but recent studies have revealed that a range of invertebrates also have a brain that is structurally asymmetric and/or each side performs a different set of functions. Here, we show that the precopulatory mating behaviour of the pond snail Lymnaea stagnalis is lateralized. We present evidence that the asymmetry of the behaviour corresponds to the sinistral or dextral shell coil, or chirality, of the snail, and is apparently also controlled by a maternal effect locus.
View Article and Find Full Text PDF