Poly(phenylene methylene) (PPM) is a multifunctional polymer that is also active as an anticorrosion fluorescent coating material. Although this polymer was synthesized already more than 100 years ago, a versatile synthetic route to obtain soluble high molar mass polymers based on PPM has yet to be achieved. In this article, the influence of bifunctional bis-chloromethyl durene (BCMD) as a branching agent in the synthesis of PPM is reported.
View Article and Find Full Text PDFSelf-assembly of colloidal nanoparticles enables the easy building of assembly units into higher-order structures and the bottom-up preparation of functional materials. Nickel phosphides represent an important group of catalysts for hydrogen evolution reaction (HER) from water splitting. In this paper, the preparation of porous nickel phosphide superparticles and their HER efficiencies are reported.
View Article and Find Full Text PDFAlthough semiconducting metal oxide (SMOx) nanoparticles (NPs) have attracted attention as sensing materials, the methodologies available to synthesize them with desirable properties are quite limited and/or often require relatively high energy consumption. Thus, we report herein the processing of Zn-doped SnO NPs via a microwave-assisted nonaqueous route at a relatively low temperature (160 °C) and with a short treatment time (20 min). In addition, the effects of adding Zn in the structural, electronic, and gas-sensing properties of SnO NPs were investigated.
View Article and Find Full Text PDFAerogels composed of preformed titania nanocrystals exhibit a large surface area, open porosity, and high crystallinity, making these materials appealing for applications in gas-phase photocatalysis. Recent studies on nanoparticle-based titania aerogels have mainly focused on optimizing their composition to improve photocatalytic performance. Little attention has been paid to modification at the microstructural level to control fundamental properties such as gas permeability and light transmittance, although these features are of fundamental importance, especially for photocatalysts of macroscopic size.
View Article and Find Full Text PDFThe practical applications of resorcinol formaldehyde resin (RFR) aerogels are prevented by their poor mechanical properties. Herein, a facile template-directed method is reported to produce macroscopic free-standing cobalt silicate (CS)@RFR core-shell nanobelt aerogels that display superelastic behavior and outstanding thermal insulating and fire-resistant capability. The synthesis relies on the polymerization of RFR on pre-formed CS nanobelts which leads to in situ formation of hydrogel monoliths that can be transformed to corresponding aerogels by a freeze-drying method.
View Article and Find Full Text PDFThe development of efficient and affordable electrode materials is crucial for clean energy storage systems, which are considered a promising strategy for addressing energy crises and environmental issues. Metal phosphorous chalcogenides (MPX ) are a fascinating class of two-dimensional materials with a tunable layered structure and high ion conductivity, making them particularly attractive for energy storage applications. This review article aims to comprehensively summarize the latest research progress on MPX materials, with a focus on their preparation methods and modulation strategies.
View Article and Find Full Text PDFRechargeable batteries play an integral role toward carbon neutrality. Environmentally sustainable batteries should consider the trade-offs between material renewability, processability, thermo-mechanical and electrochemical performance, as well as transiency. To address this dilemma, we follow circular economy principles to fabricate fungal chitin nanofibril (ChNF) gel polymer electrolytes (GPEs) for zinc-ion batteries.
View Article and Find Full Text PDFSodium-metal batteries are promising candidates for low-cost, large-format energy storage systems. However, sodium-metal batteries suffer from high interfacial resistance between the electrodes and the solid electrolyte, leading to poor electrochemical performance. We demonstrate a sodium superionic conductor (NASICON) with an oriented porous framework of sodium aluminum titanium phosphate (NATP) fabricated by the freeze-casting technique, which shows excellent properties as a solid electrolyte.
View Article and Find Full Text PDFIndium tin oxide (ITO) aerogels offer a combination of high surface area, porosity and conductive properties and could therefore be a promising material for electrodes in the fields of batteries, solar cells and fuel cells, as well as for optoelectronic applications. In this study, ITO aerogels were synthesized via two different approaches, followed by critical point drying (CPD) with liquid CO. During the nonaqueous one-pot sol-gel synthesis in benzylamine (BnNH), the ITO nanoparticles arranged to form a gel, which could be directly processed into an aerogel via solvent exchange, followed by CPD.
View Article and Find Full Text PDFThis work aims to improve the corrosion protection features of poly(phenylene methylene) (PPM) by sidechain engineering inserting methoxy units along the polymer backbone. The influence of side methoxy groups at different concentrations (4.6% mol/mol and 9% mol/mol) on the final polymer properties was investigated by structural and thermal characterization of the resulting copolymers: co-PPM 4.
View Article and Find Full Text PDFTransient batteries are expected to lessen the inherent environmental impact of traditional batteries that rely on toxic and critical raw materials. This work presents the bottom-up design of a fully transient Zn-ion battery (ZIB) made of nontoxic and earth-abundant elements, including a novel hydrogel electrolyte prepared by cross-linking agarose and carboxymethyl cellulose. Facilitated by a high ionic conductivity and a high positive zinc-ion species transference number, the optimized hydrogel electrolyte enables stable cycling of the Zn anode with a lifespan extending over 8500 h for 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
Increased occurrence of antimicrobial resistance leads to a huge burden on patients, the healthcare system, and society worldwide. Developing antimicrobial materials through doping rare-earth elements is a new strategy to overcome this challenge. To this end, we design antibacterial films containing CeO-TiO, xanthan gum, poly(acrylic acid), and hyaluronic acid.
View Article and Find Full Text PDFComplexes of poly(phenylene methylene) (PPM) with silver(I) ions and tricarbonylchromium(0) moieties, respectively, were synthesized. C NMR spectra indicate interaction of phenylene groups with silver(I) and chromium(0), and peak broadening implies dynamic behavior of the silver(I) complexes, with all phenylene groups temporarily involved in coordination, in contrast to the chromium complexes. About 5-10% of the phenylene groups are coordinated to metal atoms.
View Article and Find Full Text PDFPoly(phenylene methylene) (PPM) is a multifunctional polymer featuring hydrophobicity, high thermal stability, fluorescence and thermoplastic processability. Accordingly, smart corrosion resistant PPM-based coatings (blend and copolymer) were prepared and applied by hot pressing on aluminum alloy AA2024. The corrosion protection properties of the coatings and their dependence on coating thickness were evaluated for both strategies employed.
View Article and Find Full Text PDFTransient electronics is an emerging class of innovative technology wherein electronic devices undergo controlled degradation processes after a period of stable operation, leaving no toxic products behind. This technology offers exciting opportunities in research areas of green electronics, temporary biomedical implants, data-secure hardware systems, and many others. However, one major challenge with these devices is their rigid and bulky batteries that contain toxic chemicals and are not at all degradable.
View Article and Find Full Text PDFPhotocatalysis has the potential to make a major technological contribution to solving pressing environmental and energy problems. There are many strategies for improving photocatalysts, such as tuning the composition to optimize visible light absorption, charge separation, and surface chemistry, ensuring high crystallinity, and controlling particle size and shape to increase overall surface area and exploit the reactivity of individual crystal facets. These processes mainly affect the nanoscale and are therefore summarized as nanostructuring.
View Article and Find Full Text PDFSodium ion batteries (NIBs) based on earth-abundant materials offer efficient, safe, and environmentally sustainable solutions for a decarbonized society. However, to compete with mature energy storage technologies such as lithium ion batteries, further progress is needed, particularly regarding the energy density and operational lifetime. Considering these aspects as well as a circular economy perspective, the authors use biodegradable cellulose nanoparticles for the preparation of a gel polymer electrolyte that offers a high liquid electrolyte uptake of 2985%, an ionic conductivity of 2.
View Article and Find Full Text PDFThe development of visible light-active photocatalysts is essential for increasing the conversion efficiency of solar energy into hydrogen (H). Here, we present a facile method for nitrogen doping of monolithic titanium dioxide (TiO) nanoparticle-based aerogels to activate them for visible light. Plasma-enhanced chemical vapor deposition at low temperature enables efficient incorporation of nitrogen into preformed TiO aerogels without compromising their advantageous intrinsic characteristics such as large surface area, extensive porosity, and nanoscale properties of the semiconducting building blocks.
View Article and Find Full Text PDFMonolithic aerogels composed of crystalline nanoparticles enable photocatalysis in three dimensions, but they suffer from low mechanical stability and it is difficult to produce them with complex geometries. Here, an approach to control the geometry of the photocatalysts to optimize their photocatalytic performance by introducing carefully designed 3D printed polymeric scaffolds into the aerogel monoliths is reported. This allows to systematically study and improve fundamental parameters in gas phase photocatalysis, such as the gas flow through and the ultraviolet light penetration into the aerogel and to customize its geometric shape to a continuous gas flow reactor.
View Article and Find Full Text PDFMesocrystals are superstructures of crystallographically aligned nanoparticles and are a rapidly emerging class of crystalline materials displaying sophisticated morphologies and properties, beyond those originating from size and shape of nanoparticles alone. This study reports the first synthesis of CuN mesocrystals employing structure-directing agents with a subtle tuning of the reaction parameters. Detailed structural characterizations carried out with a combination of transmission electron microscopy techniques (HRTEM, HAADF-STEM-EXDS) reveal that CuN mesocrystals form by non-classical crystallization, and variations in their sizes and morphologies are traced back to distinct attachment scenarios of corresponding mesocrystal subunits.
View Article and Find Full Text PDFTransient technology seeks the development of materials, devices, or systems that undergo controlled degradation processes after a stable operation period, leaving behind harmless residues. To enable externally powered fully transient devices operating for longer periods compared to passive devices, transient batteries are needed. Albeit transient batteries are initially intended for biomedical applications, they represent an effective solution to circumvent the current contaminant leakage into the environment.
View Article and Find Full Text PDFColloidal nanocrystals are the ideal building blocks for the fabrication of functional materials. Using various assembly, patterning or processing techniques, the nanocrystals can be arranged with unprecedented flexibility in 1-, 2- or 3-dimensional architectures over several orders of length scales, providing access to ordered or disordered, porous or non-porous, and simple as well as hierarchical structures. Careful selection of colloidal nanocrystals allows the properties of the final materials to be predefined.
View Article and Find Full Text PDFIn this paper, inorganic silica microspheres with interconnected macroporosity are tested as a platform for designing robust and efficient photocatalytic systems for a continuous flow reactor, enabling a low cost and straightforward purification of wastewater through solar-driven photocatalysis. The photocatalytically active microspheres are prepared by wet impregnation of porous silica scaffolds with Trizma-functionalized anatase titania (TiO) nanoparticles (NPs). NPs loading of 22 wt% is obtained in the form of a thin and well-attached layer, covering the external surface of the microspheres as well as the internal surface of the pores.
View Article and Find Full Text PDFDeveloping efficient energy storage technologies is at the core of current strategies toward a decarbonized society. Energy storage systems based on renewable, nontoxic, and degradable materials represent a circular economy approach to address the environmental pollution issues associated with conventional batteries, that is, resource depletion and inadequate disposal. Here we tap into that prospect using a marine biopolymer together with a water-soluble polymer to develop sodium ion battery (NIB) separators.
View Article and Find Full Text PDFThe primary task of a battery is to store energy and to power electronic devices. This has hardly changed over the years despite all the progress made in improving their electrochemical performance. In comparison to batteries, electronic devices are continuously equipped with new functions, and they also change their physical appearance, becoming flexible, rollable, stretchable, or maybe transparent or even transient or degradable.
View Article and Find Full Text PDF