Unlabelled: Wood constantly interacts with the surrounding, locally varying climate, leading to changes in the moisture content. Advanced simulation tools can predict the two-dimensional moisture distributions caused by these changing climate conditions within wood cross sections over time. However, there is a notable absence of systematic simulation results for diverse climatic conditions and various wood cross sections.
View Article and Find Full Text PDFUnlabelled: Wood absorbs and desorbs moisture due to its hygroscopic behavior, leading to moisture gradients in timber elements as well as swelling and shrinkage. These processes are constrained due to the orthotropic material properties of wood, leading to moisture-induced stresses, which can cause crack initiation and propagation. A significant amount of the damage in timber constructions indoors can be related to changes of the moisture content (MC).
View Article and Find Full Text PDFThe mechanical properties of natural fibers, as used to produce sustainable biocomposites, vary significantly-both among different plant species and also within a single species. All plants, however, share a common microstructural fingerprint. They are built up by only a handful of constituents, most importantly cellulose.
View Article and Find Full Text PDF