Laser plasma-based particle accelerators attract great interest in fields where conventional accelerators reach limits based on size, cost or beam parameters. Despite the fact that particle in cell simulations have predicted several advantageous ion acceleration schemes, laser accelerators have not yet reached their full potential in producing simultaneous high-radiation doses at high particle energies. The most stringent limitation is the lack of a suitable high-repetition rate target that also provides a high degree of control of the plasma conditions required to access these advanced regimes.
View Article and Find Full Text PDFWe report on the development of a pump system for ultrafast optical parametric amplifiers (uOPA) as an upgrade for the existing uOPA at the Petawatt High Energy Laser for heavy Ion eXperiments (PHELIX) and the new Petawatt ENergy-Efficient Laser for Optical Plasma Experiments (PEnELOPE). The system consists of a two-stage chirped pulse amplifier, centered around a high energy Yb:YAG regenerative amplifier that delivers 108 mJ uncompressed output energy, resulting in 92 mJ at 1030 nm after compression, pulse durations of 1.4 ps, a high beam quality of M/2 = 1.
View Article and Find Full Text PDFApplication experiments with laser plasma-based accelerators (LPA) for protons have to cope with the inherent fluctuations of the proton source. This creates a demand for non-destructive and online spectral characterization of the proton pulses, which are for application experiments mostly spectrally filtered and transported by a beamline. Here, we present a scintillator-based time-of-flight (ToF) beam monitoring system (BMS) for the recording of single-pulse proton energy spectra.
View Article and Find Full Text PDFDue to the non-linear nature of relativistic laser induced plasma processes, the development of laser-plasma accelerators requires precise numerical modeling. Especially high intensity laser-solid interactions are sensitive to the temporal laser rising edge and the predictive capability of simulations suffers from incomplete information on the plasma state at the onset of the relativistic interaction. Experimental diagnostics utilizing ultra-fast optical backlighters can help to ease this challenge by providing temporally resolved inside into the plasma density evolution.
View Article and Find Full Text PDFWe report on a compact diode-pumped, chirped pulse regenerative amplifier system with a pulse duration of 162 fs and an output pulse energy of 1 mJ before as well as 910 µJ after compression optimized for the probing of ultrafast relativistic laser-plasma processes. A chirped volume Bragg grating (CVBG) acts as a combined pulse stretcher/compressor representing a robust solution for a CPA laser system in the millijoule range. Yb:CaF is used as gain medium to support a large bandwidth of 16 nm (FWHM) when spectral gain shaping is applied.
View Article and Find Full Text PDFWe report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 10 particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (∅ 5 μm) and planar (20 μm × 2 μm).
View Article and Find Full Text PDFWe investigated the lasing performance of a multislab Yb:QX and Yb:YAG laser amplifiers using a facet-cooled design. Di-deuterium oxide (D2O) was used as the coolant flowing between the active slabs with the pump and laser light passing through the very low absorbing heavy-water films. A square pump profile at a maximum intensity of 40 kW/cm2 drove the amplifier with a peak fluence of 5.
View Article and Find Full Text PDFWe present a novel approach for the amplification of high peak power femtosecond laser pulses at a high repetition rate. This approach is based on an all-diode pumped burst mode laser scheme. In this scheme, pulse bursts with a total duration between 1 and 2 ms are be generated and amplified.
View Article and Find Full Text PDFTemperature dependent absorption and emission cross-sections of 5 at% Yb(3+) doped yttrium lanthanum oxide (Yb:YLO) ceramic between 80K and 300 K are presented. In addition, we report on the first demonstration of ns pulse amplification in Yb:YLO ceramic. A pulse energy of 102 mJ was extracted from a multi-pass amplifier setup.
View Article and Find Full Text PDFFabrication, spectroscopic properties, and laser performance of a Yb:SiO(2) multicomponent glass have been investigated in this paper. The glass system composed of SiO(2), Al(2)O(3), and La(2)O(3) excels in terms of a high thermal stress resistance compared to other laser glasses. The laser experiments were conducted with a 3.
View Article and Find Full Text PDFWe report on the first demonstration of a diode-pumped, gas cooled, cryogenic multislab Yb:YAG amplifier. The performance was characterized over a temperature range from 88 to 175 K. A maximum small-signal single-pass longitudinal gain of 11.
View Article and Find Full Text PDF