Publications by authors named "Markus Liebscher"

Rotaviruses (RVs) and noroviruses (NoVs) are major causes of childhood acute gastroenteritis. During development of a combination vaccine based on NoV virus-like particles (VLP) and RV VP6 produced in baculovirus expression system in insect cells, a dual role of VP6 as a vaccine antigen and an adjuvant for NoV-specific immune responses was discovered. Here the VP6 adjuvant effect on bivalent GI.

View Article and Find Full Text PDF

Hsp70 family proteins are folding helper proteins involved in a wide variety of cellular pathways. Members of this family interact with key factors in signal transduction, transcription, cell-cycle control, and stress response. Here, we developed the first Hsp70 low molecular weight inhibitor specifically targeting the peptide binding site of human Hsp70.

View Article and Find Full Text PDF

The hsp70 chaperone DnaK from E. coli plays a major role in cellular stress response and is involved in assisted protein folding in vivo. By screening a combinatorial peptide library, we identified several DnaK-specific peptide ligands with nanomolar affinities, which are able to inhibit the secondary amide peptide bond cis/trans isomerase (APIase) activity of DnaK, as well as DnaK/DnaJ/GrpE-assisted refolding of firefly luciferase.

View Article and Find Full Text PDF

The molecular chaperone DnaK assists protein folding and refolding, translocation across membranes, and regulation of the heat shock response. In Escherichia coli, the protein is a target for insect-derived antimicrobial peptides, pyrrhocoricins. We present here the X-ray crystallographic analysis of the E.

View Article and Find Full Text PDF

We have reported that the hsp70 chaperone DnaK from Escherichia coli might assist protein folding by catalyzing the cis/trans isomerization of secondary amide peptide bonds in unfolded or partially folded proteins. In this study a series of fatty acylated benzamido inhibitors of the cis/trans isomerase activity of DnaK was developed and tested for antibacterial effects in E. coli MC4100 cells.

View Article and Find Full Text PDF