Background: Trisomy 21 (T21) is associated with intellectual disability that ranges from mild to profound with an average intellectual quotient of around 50. Furthermore, T21 patients have a high risk of developing Alzheimer's disease (AD) early in life, characterized by the presence of senile plaques of amyloid protein and neurofibrillary tangles, leading to neuronal loss and cognitive decline. We postulate that epigenetic factors contribute to the observed variability in intellectual disability, as well as at the level of neurodegeneration seen in T21 individuals.
View Article and Find Full Text PDFBackground: Late-onset Alzheimer's disease (AD) is a complex multifactorial affliction, the pathogenesis of which is thought to involve gene-environment interactions that might be captured in the epigenome. The present study investigated epigenome-wide patterns of DNA methylation (5-methylcytosine, 5mC) and hydroxymethylation (5-hydroxymethylcytosine, 5hmC), as well as the abundance of unmodified cytosine (UC), in relation to AD.
Results: We identified epigenetic differences in AD patients (n = 45) as compared to age-matched controls (n = 35) in the middle temporal gyrus, pertaining to genomic regions close to or overlapping with genes such as OXT (- 3.
Christina M. Lill, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this article. This has now been corrected in both the PDF and HTML versions of the article.
View Article and Find Full Text PDFGeneral cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P < 5 × 10) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure.
View Article and Find Full Text PDFThe large biological distance between genetic risk loci and their mechanistic consequences in the tissue of interest limits the ability to establish functionality of susceptibility variants for genetically complex traits. Such a biological gap may be reduced through the systematic study of molecular mediators of genomic action, such as epigenetic modification. Here, we report the identification of robust genetic estimators of whole-blood CpG methylation, which can serve as intermediate molecular traits amenable to association testing with other genetically complex traits.
View Article and Find Full Text PDFBackground: Bipolar disorder (BD) is a common and highly heritable disorder of mood. Genome-wide association studies (GWAS) have identified several independent susceptibility loci. In order to extract more biological information from GWAS data, multi-locus approaches represent powerful tools since they utilize knowledge about biological processes to integrate functional sets of genes at strongly to moderately associated loci.
View Article and Find Full Text PDFBackground: A usually confronted problem in association studies is the occurrence of population stratification. In this work, we propose a novel framework to consider population matchings in the contexts of genome-wide and sequencing association studies. We employ pairwise and groupwise optimal case-control matchings and present an agglomerative hierarchical clustering, both based on a genetic similarity score matrix.
View Article and Find Full Text PDFIn the present study, an integrated hierarchical approach was applied to: (1) identify pathways associated with susceptibility to schizophrenia; (2) detect genes that may be potentially affected in these pathways since they contain an associated polymorphism; and (3) annotate the functional consequences of such single-nucleotide polymorphisms (SNPs) in the affected genes or their regulatory regions. The Global Test was applied to detect schizophrenia-associated pathways using discovery and replication datasets comprising 5,040 and 5,082 individuals of European ancestry, respectively. Information concerning functional gene-sets was retrieved from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and the Molecular Signatures Database.
View Article and Find Full Text PDFBipolar disorder (BD) is a common and highly heritable mental illness and genome-wide association studies (GWAS) have robustly identified the first common genetic variants involved in disease aetiology. The data also provide strong evidence for the presence of multiple additional risk loci, each contributing a relatively small effect to BD susceptibility. Large samples are necessary to detect these risk loci.
View Article and Find Full Text PDFBackground: Meta-analysis (MA) is widely used to pool genome-wide association studies (GWASes) in order to a) increase the power to detect strong or weak genotype effects or b) as a result verification method. As a consequence of differing SNP panels among genotyping chips, imputation is the method of choice within GWAS consortia to avoid losing too many SNPs in a MA. YAMAS (Yet Another Meta Analysis Software), however, enables cross-GWAS conclusions prior to finished and polished imputation runs, which eventually are time-consuming.
View Article and Find Full Text PDFGenetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive.
View Article and Find Full Text PDFBackground: Enzymes are classified in a numerical classification scheme introduced by the Nomenclature Committee of the IUBMB based on the overall reaction chemistry. Due to the manifold of enzymatic reactions the system has become highly complex. Assignment of enzymes to the enzyme classes requires a detailed knowledge of the system and manual analysis.
View Article and Find Full Text PDFMotivation: In a wide range of experimental techniques in biology, there is a need for an efficient method to calculate the melting temperature of pairings of two single DNA strands. Avoiding cross-hybridization when choosing primers for the polymerase chain reaction or selecting probes for large-scale DNA assays are examples where the exact determination of melting temperatures is important. Beyond being exact, the method has to be efficient, as these techniques often require the simultaneous calculation of melting temperatures of up to millions of possible pairings.
View Article and Find Full Text PDF