Publications by authors named "Markus Lamla"

Small molecular kinase inhibitors play a key role in modern cancer therapy. Protein kinases are essential mediators in the growth and progression of cancerous tumors, rendering involved kinases an increasingly important target for therapy. However, kinase inhibitors are almost insoluble in water because of their hydrophobic aromatic nature, often lowering their availability and pharmacological efficacy.

View Article and Find Full Text PDF

Stable tris(trichlorophenyl)methyl radicals have gained interest as all-organic bioimaging agents combining fluorescent and paramagnetic properties. However, cellular uptake has so far only been reported for nanoparticles, because molecular hydrophobic trityl radicals are not soluble in aqueous media. Here, we report the synthesis and characterization of new water-soluble tris(trichlorophenyl)methyl radical derivatives exhibiting red doublet emission.

View Article and Find Full Text PDF

Conjugated polymer particles provide an important platform for the development of theranostic nanoagents. However, the number of biocompatible and foremost biodegradable π-conjugated polymers is limited. Imidazole is a π-conjugated motif that is abundant in biological systems.

View Article and Find Full Text PDF

In the development and optimization of imaging methods, photoacoustic imaging (PAI) has become a powerful tool for preclinical biomedical diagnosis and detection of cancer. PAI probes can improve contrast and help identify pathogenic tissue. Such contrast agents must meet several requirements: they need to be biocompatible, and absorb strongly in the near-infrared (NIR) range, while relaxing the photoexcited state thermally and not radiatively.

View Article and Find Full Text PDF

Linear polyethylenimine (L-PEI) has been the gold standard for gene delivery and is typically prepared by hydrolysis from poly(2-oxazoline)s. Recently, also the anionic polymerization of activated aziridines was reported as a potential pathway toward linear and well-defined polyamines. However, only sulfonamide-activated aziridines so far undergo the living anionic polymerization and their desulfonylation was only reported scarcely.

View Article and Find Full Text PDF

The attachment of two different functionalities in a site-selective fashion represents a great challenge in protein chemistry. We report site specific dual functionalizations of peptides and proteins capitalizing on reactivity differences of cysteines in their free (thiol) and protected, oxidized (disulfide) forms. The dual functionalization of interleukin 2 and EYFP proceeded with no loss of bioactivity in a stepwise fashion applying maleimide and disulfide rebridging allyl-sulfone groups.

View Article and Find Full Text PDF

Retroviral gene transfer is the method of choice for the stable introduction of genetic material into the cellular genome. However, efficient gene transfer is often limited by low transduction rates of the viral vectors. We have recently described a 12-mer peptide, termed EF-C, that forms amyloid-like peptide nanofibrils (PNF), strongly increasing viral transduction efficiencies.

View Article and Find Full Text PDF

Water-soluble allyl sulfones provide convenient site-specific disulfide rebridging of native proteins and cyclic peptides. The site-selective functionalization of (a) the peptide hormone somatostatin, (b) the interchain disulfide of bovine insulin and (c) functionalization of the proteins GFP and lysozyme with allyl sulfones proceeds in aqueous solution. Allyl sulfones offer three functionalizable sites that react with thiol containing molecules in a step-wise fashion.

View Article and Find Full Text PDF

We present a versatile approach for the synthesis of cyclic peptide amphiphiles of the hormone somatostatin (SST) with tunable lipophilic tails to program bioactive nanoarchitectures. A novel bis-alkylation reagent is synthesized that facilitates the functionalization of SST with a thiol anchor. Different hydrophobic moieties are introduced inspired by a biomimetic palmitoylation approach which opens access to cyclic peptide amphiphiles that display rich self-organization and cell membrane interactions.

View Article and Find Full Text PDF

The efficient conjugation of a ruthenium complex and the peptide hormone somatostatin is presented. The resultant biohybrid offers valuable features for photodynamic therapy such as remarkable cellular selectivity, rapid cell uptake by receptor-mediated endocytosis, efficient generation of (1)O2 upon irradiation, potent phototoxicity as well as low cytotoxicity in the "off"-state.

View Article and Find Full Text PDF

CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist.

View Article and Find Full Text PDF

A disulfide intercalator toolbox was developed for site-specific attachment of a broad variety of functional groups to proteins or peptides under mild, physiological conditions. The peptide hormone somatostatin (SST) served as model compound for intercalation into the available disulfide functionalization schemes starting from the intercalator or the reactive SST precursor before or after bioconjugation. A tetrazole-SST derivative was obtained that undergoes photoinduced cycloaddition in mammalian cells, which was monitored by live-cell imaging.

View Article and Find Full Text PDF

The modulation of protein uptake and activity in response to physiological changes forms an integral part of smart protein therapeutics. We describe herein the self-assembly of a pH-responsive dendrimer shell onto the surface of active enzymes (trypsin, papain, DNase I) as a supramolecular protecting group to form a hybrid dendrimer-enzyme complex. The attachment is based on the interaction between boronic acid and salicyl hydroxamate, thus allowing the macromolecular assembly to respond to changes in pH between 5.

View Article and Find Full Text PDF

Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin) into cultured human sarcoma cells.

View Article and Find Full Text PDF

The native transportation protein serum albumin represents an attractive nano-sized transporter for drug delivery applications due to its beneficial safety profile. Existing albumin-based drug delivery systems are often limited by their low drug loading capacity as well as noticeable drug leakage into the blood circulation. Therefore, a unique albumin-derived core-shell doxorubicin (DOX) delivery system based on the protein denaturing-backfolding strategy was developed.

View Article and Find Full Text PDF

Background: Mechanical forces are known to alter the expression of genes, but it has so far not been reported whether they may influence the fidelity of nucleus-based processes. One experimental approach permitting to address this question is the application of cyclic stretch to cultured human fibroblasts. As a marker for the precision of nucleus-based processes, the number of errors that occur during co-transcriptional splicing can then be measured.

View Article and Find Full Text PDF

In human pre-mRNA splicing, infrequent errors occur resulting in erroneous splice products as shown in a genome-wide approach. One characteristic subgroup consists of products lacking one cassette exon. The noise in the splicing process, represented by those misspliced products, can be increased by cold shock treatment or by inhibiting the nonsense mediated decay.

View Article and Find Full Text PDF

Two approaches to target PNAs (peptide nucleic acids) into mitochondria of HeLa cells were compared. In the first, PNA was modified with the lipophilic cation TPP. TPP-PNA accumulated rapidly within mitochondria driven by the membrane potential.

View Article and Find Full Text PDF