Publications by authors named "Markus Kuehn"

Intraocular pressure (IOP) elevation is the primary risk factor and currently the main treatable factor for progression of glaucomatous optic neuropathy. In addition to direct clinical and living animal in vivo studies, ex vivo perfusion of anterior segments and whole eyes is a key technique for studying conventional outflow function as it is responsible for IOP regulation. We present well-tested experimental details, protocols, considerations, advantages, and limitations of several ex vivo model systems for studying IOP regulation.

View Article and Find Full Text PDF

Unlabelled: Trabecular meshwork (TM) cell therapy has been proposed as a next-generation treatment for elevated intraocular pressure (IOP) in glaucoma, the most common cause of irreversible blindness. Using a magnetic cell steering technique with excellent efficiency and tissue-specific targeting, we delivered two types of cells into a mouse model of glaucoma: either human adipose-derived mesenchymal stem cells (hAMSCs) or induced pluripotent cell derivatives (iPSC-TM cells). We observed a 4.

View Article and Find Full Text PDF

Transgenic C57BL/6 mice expressing human myocilin (Tg-MYOC) are a well-established model for primary open-angle glaucoma (POAG). While the reduced trabecular meshwork (TM) cellularity due to severe endoplasmic reticulum (ER) stress has been characterized as the etiology of this model, there is a limited understanding of how glaucomatous phenotypes evolve over the lifespan of Tg-Myoc mice. In this study, we compiled the model's intraocular pressure (IOP) data recorded in our laboratory from 2017 to 2023 and selected representative eyes to measure the outflow facility (C), a critical parameter indicating the condition of the conventional TM pathway.

View Article and Find Full Text PDF

Changes in the anterior segment of the eye due to type 2 diabetes mellitus (T2DM) are not well-characterized, in part due to the lack of a reliable animal model. This study evaluated changes in the anterior segment, including crystalline lens health, corneal endothelial cell density, aqueous humor metabolites, and ciliary body vasculature, in a rat model of T2DM compared with human eyes. Male Sprague-Dawley rats were fed a high-fat diet (45% fat) or normal diet, and rats fed the high-fat diet were injected with streptozotocin intraperitoneally to generate a model of T2DM.

View Article and Find Full Text PDF

Glaucoma is one of the leading causes of irreversible blindness worldwide and vision loss in the disease results from the deterioration of retinal ganglion cells (RGC) and their axons. Metabolic dysfunction of RGC plays a significant role in the onset and progression of the disease in both human patients and rodent models, highlighting the need to better define the mechanisms regulating cellular energy metabolism in glaucoma. This study sought to determine if Sarm1, a gene involved in axonal degeneration and NAD+ metabolism, contributes to glaucomatous RGC loss in a mouse model with chronic elevated intraocular pressure (IOP).

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs)- and induced pluripotent stem cells (hiPSCs)-derived retinal organoids (ROs) are three-dimensional laminar structures that recapitulate the developmental trajectory of the human retina. The ROs provide a fascinating tool for basic science research, eye disease modeling, treatment development, and biobanking for tissue/cell replacement. Here we review the previous studies that paved the way for RO technology, the two most widely accepted, standardized protocols to generate ROs, and the utilization of ROs in medical discovery.

View Article and Find Full Text PDF

The trabecular meshwork (TM) of the eye serves as an essential tissue in controlling aqueous humor (AH) outflow and intraocular pressure (IOP) homeostasis. However, dysfunctional TM cells and/or decreased TM cellularity is become a critical pathogenic cause for primary open-angle glaucoma (POAG). Consequently, it is particularly valuable to investigate TM characteristics, which, in turn, facilitates the development of new treatments for POAG.

View Article and Find Full Text PDF

Glaucoma is the leading cause of irreversible blindness worldwide and its most prevalent subtype is primary open angle glaucoma (POAG). One pathological change in POAG is loss of cells in the trabecular meshwork (TM), which is thought to contribute to ocular hypertension and has thus motivated development of cell-based therapies to refunctionalize the TM. TM cell therapy has shown promise in intraocular pressure (IOP) control, but existing cell delivery techniques suffer from poor delivery efficiency.

View Article and Find Full Text PDF

Optic nerve head (ONH) cupping is a clinical feature of glaucoma associated with extracellular matrix (ECM) remodelling and lamina cribrosa (LC) fibrosis. Peripapillary atrophy (PPA) occurs commonly in glaucoma, and is characterised by the loss of retinal pigment epithelium (RPE) adjacent to the ONH. Under pro-fibrotic conditions, epithelial cells throughout the body can differentiate into fibroblast-like cells through epithelial-to-mesenchymal transition (EMT) and contribute to ECM fibrosis.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to examine the role of the immune system and its influence on chronic retinal ganglion cell (RGC) dysfunction following blast-mediated traumatic brain injury (bTBI).

Methods: C57BL/6J and B6.129S7-Rag1/J (Rag) mice were exposed to one blast injury of 140 kPa.

View Article and Find Full Text PDF

The development of the vertebrate retina relies on complex regulatory mechanisms to achieve its characteristic layered morphology containing multiple neuronal cell types. While connexin 43 (CX43) is not expressed by mature retinal neurons, mutations in its gene GJA1 are associated with microphthalmia and low vision in patients. To delineate how lack of CX43 affects retinal development, GJA1 was disrupted in human induced pluripotent stem cells (hiPSCs) (GJA1-/-) using CRISPR/Cas9 editing, and these were subsequently differentiated into retinal organoids.

View Article and Find Full Text PDF

Neuroinflammation significantly contributes to the pathophysiology of several neurodegenerative diseases. This is also the case in glaucoma and may be a reason why many patients suffer from progressive vision loss despite maximal reduction in intraocular pressure. Pioglitazone is an agonist of the peroxisome proliferator-activated receptor gamma (PPARγ) whose pleiotrophic activities include modulation of cellular energy metabolism and reduction in inflammation.

View Article and Find Full Text PDF

Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to examine the expression of glial-derived neurotrophic factor (GDNF), the GDNF receptors GFRα1 and GFRα2, ciliary neurotrophic factor (CNTF), and the CNTF receptor CNTFRα in normal and glaucomatous human tissue.

Methods: Human retinas were collected from 8 donors that had been clinically diagnosed and treated for glaucoma, and also from 9 healthy control donors. Immunohistochemical analysis for each trophic factor and receptor was performed.

View Article and Find Full Text PDF

Glaucoma is a multifactorial disease resulting in progressive vision loss due to retinal ganglion cell (RGC) dysfunction and death. Early events in the pathobiology of the disease include oxidative, metabolic, or mechanical stress that acts upon RGC, causing these to rapidly release danger signals, including extracellular ATP, resulting in micro- and macroglial activation and neuroinflammation. Danger signaling also leads to the formation of inflammasomes in the retina that enable maturation of proinflammatory cytokines such IL-1β and IL-18.

View Article and Find Full Text PDF

Purpose: Decreased trabecular meshwork (TM) cellularity has been implicated as a major reason for TM dysfunction and aqueous humor (AH) outflow abnormalities in primary open angle glaucoma. We previously found that transplantation of induced pluripotent stem cell (iPSC)-derived TM cells can restore TM function and stimulate endogenous TM cell division. The goal of the present study is to investigate whether signaling via gap junctions is involved in this process.

View Article and Find Full Text PDF

Glaucoma is a leading cause of irreversible blindness worldwide, and increased intraocular pressure (IOP) is a major risk factor. We aimed to determine if early functional and molecular differences in the glaucomatous retina manifest before significant retinal ganglion cell (RGC) loss is apparent. Adenoviral vectors expressing a pathogenic form of myocilin (Ad5.

View Article and Find Full Text PDF

Purpose: Stem cell-based therapy has the potential to become one approach to regenerate the damaged trabecular meshwork (TM) in glaucoma. Co-culture of induced pluripotent stem cells (iPSCs) with human TM cells has been a successful approach to generate autologous TM resembling cells. However, the differentiated cells generated using this approach are still problematic for clinical usage.

View Article and Find Full Text PDF

Diabetic Retinopathy (DR) is among the major global causes for vision loss. With the rise in diabetes prevalence, an increase in DR incidence is expected. Current understanding of both the molecular etiology and pathways involved in the initiation and progression of DR is limited.

View Article and Find Full Text PDF

The cells residing in the trabecular meshwork (TM) fulfill important roles in the maintenance of the tissue and the regulation of intraocular pressure (IOP). Here we examine (i) TM cell distribution along the circumference of the human eye, (ii) differences in TM cell density between regions of high and low outflow, and (iii) whether TM cell distribution in eyes from donors with primary open angle glaucoma (POAG) differs from that of normal eyes. Toward this end, the TM cell density from 12 radial segments around the circumference of the TM of human donor eyes (n = 6) with and without POAG was determined using histochemical methods.

View Article and Find Full Text PDF

Objective: To describe functional and structural features of presumed cancer-associated retinopathy (CAR) mimicking sudden acquired retinal degeneration syndrome (SARDS) in dogs and describe treatment outcomes.

Animals: Subjects were 17 dogs from 8 eight US states and Canada diagnosed with SARDS or immune-mediated retinitis (IMR) by 12 ophthalmologists. Nine eyes from seven deceased patients were used for microarray (MA), histology, or immunohistochemical (IHC) analysis.

View Article and Find Full Text PDF

Purpose: We previously demonstrated that passive transfer of lymphocytes from glaucomatous mice induces retinal ganglion cell (RGC) damage in recipient animals, suggesting a role for immune responses in the multifactorial pathophysiology of glaucoma. Here we evaluate whether absence of an adaptive immune response reduces RGC loss in glaucoma.

Methods: Elevated intraocular pressure (IOP) was induced in one eye of C57BL/6J (B6) or T- and B-cell-deficient Rag1-/- knockout mice.

View Article and Find Full Text PDF

Purpose: To examine the expression of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, tropomyosin-related kinase receptor-B (TrkB), in normal and glaucomatous human retinas.

Methods: Human retinas were collected from 8 donors who had been clinically diagnosed and treated for glaucoma, and from 9 control donors. Immunohistochemical analysis for BDNF and TrkB was performed.

View Article and Find Full Text PDF

The trabecular meshwork's (TM) physiological role is to maintain normal intraocular pressure by regulating aqueous humor outflow. With age, and particularly in eyes with primary open angle glaucoma, the number of cells residing within the TM is markedly decreased and the function of the tissue is compromised. Here we evaluate if transplantation of induced pluripotent stem cell derived TM like cells (iPSC-TM) restores TM cellularity and function in human eyes obtained from older human donors.

View Article and Find Full Text PDF

Purpose: Traumatic brain injury (TBI) is a risk factor for developing chronic neurodegenerative conditions including Alzheimer's disease (AD). The purpose of this study was to examine chronic effects of blast TBI on retinal ganglion cells (RGC), optic nerve, and brain amyloid load in a mouse model of AD amyloidosis.

Methods: Transgenic (TG) double-mutant APPswePSENd19e (APP/PS1) mice and nontransgenic (Non-TG) littermates were exposed to a single blast TBI (20 psi) at age 2 to 3 months.

View Article and Find Full Text PDF