Publications by authors named "Markus Karl"

Molecular dyes, plasmonic nanoparticles and colloidal quantum dots are widely used in biomedical optics. Their operation is usually governed by spontaneous processes, which results in broad spectral features and limited signal-to-noise ratio, thus restricting opportunities for spectral multiplexing and sensing. Lasers provide the ultimate spectral definition and background suppression, and their integration with cells has recently been demonstrated.

View Article and Find Full Text PDF

Organic semiconductors enable the fabrication of a range of lightweight and mechanically flexible optoelectronic devices. Most organic semiconductor lasers, however, have remained rigid until now, predominantly due to the need for a support substrate. Here, we use a simple fabrication process to make membrane-based, substrate-less and extremely thin (<500 nm) organic distributed feedback lasers that offer ultralow-weight (m/A<0.

View Article and Find Full Text PDF

By analyzing spin-spin correlation functions at relatively short distances, we show that equilibrium near-critical properties can be extracted at short times after quenches into the vicinity of a quantum critical point. The time scales after which equilibrium properties can be extracted are sufficiently short so that the proposed scheme should be viable for quantum simulators of spin models based on ultracold atoms or trapped ions. Our results, analytic as well as numeric, are for one-dimensional spin models, either integrable or nonintegrable, but we expect our conclusions to be valid in higher dimensions as well.

View Article and Find Full Text PDF
Article Synopsis
  • Direct laser writing can create photonic structures in layers containing recombinant fluorescent proteins within optical microcavities.
  • The laser light used can induce significant photonic confinement, achieving potentials around 40 meV.
  • This method allows for precise spatial control and enables room-temperature lasing in various shapes, like rings and pillars, using specially designed laser beams.
View Article and Find Full Text PDF

Reliable methods to individually track large numbers of cells in real time are urgently needed to advance our understanding of important biological processes like cancer metastasis, neuronal network development and wound healing. It has recently been suggested to introduce microscopic whispering gallery mode lasers into the cytoplasm of cells and to use their characteristic, size-dependent emission spectrum as optical barcode but so far there is no evidence that this approach is generally applicable. Here, we describe a method that drastically improves intracellular delivery of resonators for several cell types, including mitotic and non-phagocytic cells.

View Article and Find Full Text PDF

We report on a laser that is fully embedded within a single live cell. By harnessing natural endocytosis of the cell, we introduce a fluorescent whispering gallery mode (WGM) microresonator into the cell cytoplasm. On pumping with nanojoule light pulses, green laser emission is generated inside the cells.

View Article and Find Full Text PDF

Possible universal dynamics of a many-body system far from thermal equilibrium are explored. A focus is set on meta-stable non-thermal states exhibiting critical properties such as self-similarity and independence of the details of how the respective state has been reached. It is proposed that universal dynamics far from equilibrium can be tuned to exhibit a dynamical transition where these critical properties change qualitatively.

View Article and Find Full Text PDF

The systematic translation of standardized instruments is an alternative method to the development of an own instrument. Neither German nor English literature provide an answer to the patient view of the discomfort of bedpans. Therefore the Belgian Bedpan Ongemak Schaal((BOS) was translated into German.

View Article and Find Full Text PDF