Background And Objectives: Bedside chest radiographs (CXRs) are challenging to interpret but important for monitoring cardiothoracic disease and invasive therapy devices in critical care and emergency medicine. Taking surrounding anatomy into account is likely to improve the diagnostic accuracy of artificial intelligence and bring its performance closer to that of a radiologist. Therefore, we aimed to develop a deep convolutional neural network for efficient automatic anatomy segmentation of bedside CXRs.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Malnutrition is a global health crisis and is a leading cause of death among children under 5 years. Detecting malnutrition requires anthropometric measurements of weight, height, and middle-upper arm circumference. However, measuring them accurately is a challenge, especially in the global south, due to limited resources.
View Article and Find Full Text PDF