Although bioluminescence is documented both anecdotally and experimentally, the parameters involved in the production of fungal bioluminescence during wood colonization have not been identified to date. Here, for the first time, this work develops a methodology to produce a hybrid living material by manipulating wood colonization through merging the living fungus Desarmillaria tabescens with nonliving balsa (Ochroma pyramidale) wood to achieve and control the autonomous emission of bioluminescence. The hybrid material with the highest bioluminescence is produced by soaking the wood blocks before co-cultivating them with the fungus for 3 months.
View Article and Find Full Text PDFTrichoderma spp. are ubiquitous soil-borne fungi that are widely used in biological control to promote and regulate healthy plant growth, as well as protect against plant pathogens. However, as with many biological materials, the relative instability of Trichoderma propagules limits its practical use in industrial applications.
View Article and Find Full Text PDFNewly enforced trade restrictions on seaweed, have resulted in short supply of technical agar with potential consequences for research, public health, and clinical labs. Here we show that microfibrillated cellulose (MFC), with and without an additional carbon source, can be used as an inexpensive growth media for cultivating and maintaining wood decay fungi.
View Article and Find Full Text PDFThis study represents for the first time a comprehensive assessment of functionality and environmental impacts of metallic silver nanoparticles (Ag-NP) compared to conventional organic biocides. Four different transparent, hydrophobic coatings of wooden outdoor façades were tested during one year outdoor weathering. The total silver release from products with Ag-NP was proportional to the overall erosion of the coating.
View Article and Find Full Text PDF