The preoperative prediction of resectability pancreatic ductal adenocarcinoma (PDAC) is challenging. This retrospective single-center study examined tumor and vessel radiomics to predict the resectability of PDAC in chemo-naïve patients. The tumor and adjacent arteries and veins were segmented in the portal-venous phase of contrast-enhanced CT scans, and radiomic features were extracted.
View Article and Find Full Text PDFBackground: While several methods have been proposed for automated assessment of breast-cancer response to neoadjuvant chemotherapy on breast MRI, limited information is available about their performance across multiple institutions.
Purpose: To assess the value and robustness of deep learning-derived volumes of locally advanced breast cancer (LABC) on MRI to infer the presence of residual disease after neoadjuvant chemotherapy.
Study Type: Retrospective.
Introduction: The response to neoadjuvant chemotherapy (NAC) in breast cancer has important prognostic implications. Dynamic prediction of tumour regression by NAC may allow for adaption of the treatment plan before completion, or even before the start of treatment. Such predictions may help prevent overtreatment and related toxicity and correct for undertreatment with ineffective regimens.
View Article and Find Full Text PDFThe Multi-Ethnic Study of Atherosclerosis (MESA), begun in 2000, was the first large cohort study to incorporate cardiovascular magnetic resonance (CMR) to study the mechanisms of cardiovascular disease in over 5,000 initially asymptomatic participants, and there is now a wealth of follow-up data over 20 years. However, the imaging technology used to generate the CMR images is no longer in routine use, and methods trained on modern data fail when applied to such legacy datasets. This study aimed to develop a fully automated CMR analysis pipeline that leverages the ability of machine learning algorithms to enable extraction of additional information from such a large-scale legacy dataset, expanding on the original manual analyses.
View Article and Find Full Text PDFTo purpose of this paper was to assess the feasibility of volumetric breast density estimations on MRI without segmentations accompanied with an explainability step. A total of 615 patients with breast cancer were included for volumetric breast density estimation. A 3-dimensional regression convolutional neural network (CNN) was used to estimate the volumetric breast density.
View Article and Find Full Text PDF