Publications by authors named "Markus Grubinger"

Transforming growth factor (TGF)-β suppresses early hepatocellular carcinoma (HCC) development but triggers pro-oncogenic abilities at later stages. Recent data suggest that the receptor tyrosine kinase Axl causes a TGF-β switch toward dedifferentiation and invasion of HCC cells. Here, we analyzed two human cellular HCC models with opposing phenotypes in response to TGF-β.

View Article and Find Full Text PDF

Epithelial to mesenchymal transition has been suggested as a relevant contributor to pulmonary fibrosis, but how and where this complex process is triggered in idiopathic pulmonary fibrosis is not fully understood. Beta-tubulin-III (Tubβ3), ZEB1, and β-catenin are partially under the negative control of miR-200, a family of micro-RNAs playing a major role in epithelial to mesenchymal transition, that are reduced in experimental lung fibrosis and idiopathic pulmonary fibrosis. We wonder whether in situ expression of these proteins is increased in idiopathic pulmonary fibrosis, to better understand the significance of miR-200 feedback loop and epithelial to mesenchymal transition.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is the most common form of liver cancer and the third most lethal cancer worldwide. The epithelial to mesenchymal transition (EMT) describes the transformation of well-differentiated epithelial cells to a de-differentiated phenotype and plays a central role in the invasion and intrahepatic metastasis of HCC cells. Modulation of the transforming growth factor-β (TGF-β) signaling is known to induce various tumor-promoting and EMT-inducing pathways in HCC.

View Article and Find Full Text PDF

Unlabelled: In hepatocellular carcinoma (HCC), intrahepatic metastasis frequently correlates with epithelial to mesenchymal transition (EMT) of malignant hepatocytes. Several mechanisms have been identified to be essentially involved in hepatocellular EMT, among them transforming growth factor (TGF)-β signaling. Here we show the up-regulation and activation of the receptor tyrosine kinase Axl in EMT-transformed hepatoma cells.

View Article and Find Full Text PDF

Treatment options for hepatocellular carcinoma using chemotherapeutics at intermediate and advanced stages of disease are limited as patients most rapidly escape from therapy and succumb to disease progression. Mechanisms of the hepatic xenobiotic metabolism are mostly involved in providing chemoresistance to therapeutic compounds. Given the fact that the aberrant activation of cyclin-dependent kinases (CDK) is frequently observed in hepatocellular carcinomas, we focused on the efficacy of the novel compounds BA-12 and BP-14 that antagonize CDK1/2/5/7 and CDK9.

View Article and Find Full Text PDF

The epithelial to mesenchymal transition (EMT) represents a crucial event during cancer progression and dissemination. EMT is the conversion of carcinoma cells from an epithelial to a mesenchymal phenotype that associates with a higher cell motility as well as enhanced chemoresistance and cancer stemness. Notably, EMT has been increasingly recognized as an early event of metastasis.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) and cholangiocellular carcinoma (CCC) represent the majority of hepatic malignancies and are among the most frequent causes of cancer deaths worldwide with a rising incidence in western countries. Upon progression of liver cancer, the epithelial to mesenchymal transition (EMT) is considered a key process that drives intrahepatic metastasis. EMT is the transformation of epithelial cells to a mesenchymal phenotype exacerbating motility and invasiveness of various epithelial cell types.

View Article and Find Full Text PDF

The transition of epithelial cells to a mesenchymal phenotype is of paramount relevance for embryonic development and adult wound healing. During the past decade, the epithelial-mesenchymal transition (EMT) has been increasingly recognized to occur during the progression of various carcinomas such as hepatocellular carcinoma (HCC). Here, we focus on EMT in both experimental liver models and human HCC, emphasizing the underlying molecular mechanisms which show partial recurrence of embryonic programs such as TGF-beta and Wnt/ beta-catenin signaling, including collaboration with hepatitis viruses.

View Article and Find Full Text PDF

Background: Integrin signaling, stimulated by cell adhesion to the extracellular matrix, plays a critical role in coordinating changes in cell morphology and migration. The requisite remodeling of the cytoskeleton is controlled by the Rho family of small GTPases, which are, in turn, regulated via activation by guanine-nucleotide exchange factors (GEFs) and inactivation by GTPase-activating proteins (GAPs). However, the mechanisms contributing to the precise spatial and temporal regulation of these Rho GTPase modulators remain poorly understood.

View Article and Find Full Text PDF

Cysteine-rich proteins (CRPs) have been shown to be involved in cell differentiation, transcriptional regulation and the organisation of the actin cytoskeleton. Thus far, the latter function has been inferred solely from the in vitro interaction of CRP1, CRP2, and CRP3 with alpha-actinin and zyxin. We show here that purified, recombinant CRP2 binds directly to F-actin in vitro in co-sedimentation assays.

View Article and Find Full Text PDF