Publications by authors named "Markus Geuking"

Background: Despite achieving endoscopic remission, over 20% of inflammatory bowel disease (IBD) patients experience chronic abdominal pain. Visceral pain and the microbiome exhibit sex-dependent interactions, while visceral pain in IBD shows a sex bias. Our aim was to evaluate whether post-inflammatory microbial perturbations contribute to visceral hypersensitivity in a sex-dependent manner.

View Article and Find Full Text PDF

Healthy host-microbial mutualism with our intestinal microbiota relies to a large degree on compartmentalization and careful regulation of adaptive mucosal and systemic anti-microbial immune responses. However, commensal intestinal bacteria are never exclusively or permanently restricted to the intestinal lumen and regularly reach the systemic circulation. This results in various degrees of commensal bacteremia that needs to be appropriately dealt with by the systemic immune system.

View Article and Find Full Text PDF

During bloodstream infections, neutrophils home to the liver as part of an intravascular immune response to eradicate blood-borne pathogens, but the mechanisms regulating this crucial response are unknown. Using in vivo imaging of neutrophil trafficking in germ-free and gnotobiotic mice, we demonstrate that the intestinal microbiota guides neutrophil homing to the liver in response to infection mediated by the microbial metabolite D-lactate. Commensal-derived D-lactate augments neutrophil adhesion in the liver independent of granulopoiesis in bone marrow or neutrophil maturation and activation in blood.

View Article and Find Full Text PDF
Article Synopsis
  • The gut bacteria, though only in the stomach and intestines, play a big role in helping our body's immune system fight off germs and infections!
  • New research shows that these helpful gut microbes can send signals far beyond the gut to help immune cells work better all over the body!
  • When the balance of these gut bacteria is messed up, it can cause problems like making immune responses too strong or weak, which can lead to serious health issues like infections and organ damage!
View Article and Find Full Text PDF

The intestine harbors a large population of resident eosinophils, yet the function of intestinal eosinophils has not been explored. Flow cytometry and whole-mount imaging identified eosinophils residing in the lamina propria along the length of the intestine prior to postnatal microbial colonization. Microscopy, transcriptomic analysis, and mass spectrometry of intestinal tissue revealed villus blunting, altered extracellular matrix, decreased epithelial cell turnover, increased gastrointestinal motility, and decreased lipid absorption in eosinophil-deficient mice.

View Article and Find Full Text PDF

The intestinal microbiota is critical for the development of gut-associated lymphoid tissues, including Peyer's patches and mesenteric lymph nodes, and is instrumental in educating the local as well as systemic immune system. In addition, it also impacts the development and function of peripheral organs, such as liver, lung, and the brain, in health and disease. However, whether and how the intestinal microbiota has an impact on T cell ontogeny in the hymus remains largely unclear.

View Article and Find Full Text PDF

The gut microbiota has been shown to promote the efficacy of cancer therapy through regulating adaptive immune responses. In this issue of Cell, Lam et al. provide new evidence demonstrating that specific gut bacteria also reprogram the innate immune tumor microenvironment to enhance the efficacy of cancer therapies.

View Article and Find Full Text PDF

Squamous cell carcinoma of the tonsil is one of the most frequent cancers of the oropharynx. The escalating rate of tonsil cancer during the last decades is associated with the increase of high risk-human papilloma virus (HR-HPV) infections. While the microbiome in oropharyngeal malignant diseases has been characterized to some extent, the microbial colonization of HR-HPV-associated tonsil cancer remains largely unknown.

View Article and Find Full Text PDF

Eradication of pathogens from the bloodstream is critical to prevent disseminated infections and sepsis. Kupffer cells in the liver form an intravascular firewall that captures and clears pathogens from the blood. Here, we show that the catching and killing of circulating pathogens by Kupffer cells in vivo are promoted by the gut microbiota through commensal-derived D-lactate that reaches the liver via the portal vein.

View Article and Find Full Text PDF

Induction of intestinal T helper cell subsets by commensal members of the intestinal microbiota is an important component of the many immune adaptations required to establish host-microbial homeostasis. Importantly, altered intestinal T helper cell profiles can have pathological consequences that are not limited to intestinal sites. Therefore, microbial-mediated modulation of the intestinal T helper cell profile could have strong therapeutic potentials.

View Article and Find Full Text PDF

Several species of intestinal bacteria have been associated with enhanced efficacy of checkpoint blockade immunotherapy, but the underlying mechanisms by which the microbiome enhances antitumor immunity are unclear. In this study, we isolated three bacterial species-, , and species-that significantly enhanced efficacy of immune checkpoint inhibitors in four mouse models of cancer. We found that intestinal modulated enhanced immunotherapy response through production of the metabolite inosine.

View Article and Find Full Text PDF

Background & Aims: Despite achieving endoscopic remission, more than 20% of inflammatory bowel disease patients experience chronic abdominal pain. These patients have increased rectal transient receptor potential vanilloid-1 receptor (TRPV1) expression, a key transducer of inflammatory pain. Because inflammatory bowel disease patients in remission exhibit dysbiosis and microbial manipulation alters TRPV1 function, our goal was to examine whether microbial perturbation modulated transient receptor potential function in a mouse model.

View Article and Find Full Text PDF

Early life exposure to microbes plays an important role in immune system development. Germ-free mice, or mice colonized with a low-diversity microbiota, exhibit high serum IgE levels. An increase in microbial richness, providing it occurs in a critical developmental window early in life, leads to inhibition of this hygiene-induced IgE.

View Article and Find Full Text PDF

Myocarditis can develop into inflammatory cardiomyopathy through chronic stimulation of myosin heavy chain 6-specific T helper (T)1 and T17 cells. However, mechanisms governing the cardiotoxicity programming of heart-specific T cells have remained elusive. Using a mouse model of spontaneous autoimmune myocarditis, we show that progression of myocarditis to lethal heart disease depends on cardiac myosin-specific T17 cells imprinted in the intestine by a commensal species peptide mimic.

View Article and Find Full Text PDF

The microbiota plays an important role in regulating both the innate and adaptive immune systems. Many studies have focused on the ability of microbes to shape the immune system by stimulating B-cell and antibody responses and the differentiation of T helper cell function. However, an important feature of the immune system is its ability to generate memory responses, which provide increased survival for the host.

View Article and Find Full Text PDF

Owing to an error during typesetting, a number of references were deleted from the Methods reference list. This altered all of the references in the Methods section and some of the references in Extended Data Fig. 5, making them inaccurate.

View Article and Find Full Text PDF

Macrophages play central roles in immunity as early effectors and modulating adaptive immune reponses; we implicated macrophages in the anticolitic effect of infection with the tapeworm Hymenolepis diminuta. Here, gene arrays revealed that H. diminuta antigen (HdAg) evoked a program in murine macrophages distinct from that elicited by IL-4.

View Article and Find Full Text PDF

Inflammatory bowel diseases (IBD) can be broadly divided into Crohn's disease (CD) and ulcerative colitis (UC) from their clinical phenotypes. Over 150 host susceptibility genes have been described, although most overlap between CD, UC and their subtypes, and they do not adequately account for the overall incidence or the highly variable severity of disease. Replicating key findings between two long-term IBD cohorts, we have defined distinct networks of taxa associations within intestinal biopsies of CD and UC patients.

View Article and Find Full Text PDF

A recently identified feature of the host response to infection with helminth parasites is suppression of concomitant disease. Dendritic cells (DCs) exposed to antigens from the tapeworm Hymenolepis diminuta significantly reduce the severity of dinitrobenzene sulfonic acid-induced colitis in mice. Here we elucidate mechanisms underlying this cellular immunotherapy.

View Article and Find Full Text PDF

The trillions of microbes that colonize mucosal surfaces are critical for educating the immune system and microbial-derived signals continually shape and set the tone of immune responses. Although Type 2 immune responses are important for mediating protection from helminth infection they also underlie atopy and allergy. Microbes modulate Type 2 immune responses through effects on Type 2 cytokines, dendritic cells and regulatory T cells.

View Article and Find Full Text PDF

All mucosal surfaces are colonized with a vast number of microbes, which are essential for stimulating and regulating the immune system. While intrinsic and innate mechanisms exist to promote a strong barrier between the microbiota and the host to ensure compartmentalization, the microbiota is also able to induce robust adaptive immunity. In this review, we discuss the interplay between the microbiota and the adaptive immune system, with a focus on the induction of mucosal and systemic antibody responses and newly defined roles of maternal antibodies.

View Article and Find Full Text PDF

Unlabelled: Hepatocellular carcinoma (HCC) represents the fifth-most common form of cancer worldwide and carries a high mortality rate attributed to lack of effective treatment. Males are 8 times more likely to develop HCC than females, an effect largely driven by sex hormones, albeit through still poorly understood mechanisms. We previously identified TRIM28 (tripartite protein 28), a scaffold protein capable of recruiting a number of chromatin modifiers, as a crucial mediator of sexual dimorphism in the liver.

View Article and Find Full Text PDF

Mouse models are used extensively to study human health and to investigate the mechanisms underlying human disease. In the past, most animal studies were performed without taking into consideration the impact of the microbiota. However, the microbiota that colonizes all body surfaces, including the gastrointestinal tract, respiratory tract, genitourinary tract, and skin, heavily impacts nearly every aspect of host physiology.

View Article and Find Full Text PDF
Article Synopsis
  • The P2X7 receptor is crucial for regulating the abundance of T follicular helper (Tfh) cells in the Peyer's patches of the small intestine, and deleting the P2rx7 gene enhances IgA secretion related to gut bacteria.
  • Tfh cell activity is essential for maintaining a diverse gut microbiome, and they help create a balanced gut ecosystem through sensing extracellular ATP from the microbiota via the P2X7 receptor.
  • The study suggests that Tfh cells not only protect the intestinal mucosa but also play a significant role in fostering a beneficial microbiome for the host, highlighting extracellular ATP as an important signaling molecule for microbial selection.
View Article and Find Full Text PDF