Arthropod-borne members of the genus cause significant human disease. Four serotypes of dengue virus are endemic globally, and approximately 50 percent of the world's population lives in a dengue-affected area. Complications from immunoenhancement occurring after a secondary infection with a different dengue serotype make vaccine development challenging.
View Article and Find Full Text PDFPotential G-quadruplex sites have been identified in the genomes of DNA and RNA viruses and proposed as regulatory elements. The genus Orthoflavivirus contains arthropod-transmitted, positive-sense, single-stranded RNA viruses that cause significant human disease globally. Computational studies have identified multiple potential G-quadruplex sites that are conserved across members of this genus.
View Article and Find Full Text PDFNucleobases such as inosine have been extensively utilized to map direct contacts by proteins in the DNA groove. Their deployment as targeted probes of dynamics and hydration, which are dominant thermodynamic drivers of affinity and specificity, has been limited by a paucity of suitable experimental models. We report a joint crystallographic, thermodynamic, and computational study of the bidentate complex of the arginine side chain with a Watson-Crick guanine (Arg×GC), a highly specific configuration adopted by major transcription factors throughout the eukaryotic branches in the Tree of Life.
View Article and Find Full Text PDFTumor-specific T cells are frequently exhausted by chronic antigenic stimulation. We here report on a human antigen-specific ex vivo model to explore new therapeutic options for T cell immunotherapies. T cells generated with this model resemble tumor-infiltrating exhausted T cells on a phenotypic and transcriptional level.
View Article and Find Full Text PDFBackground: Next-generation cancer immunotherapies are designed to broaden the therapeutic repertoire by targeting new immune checkpoints including lymphocyte-activation gene 3 (LAG-3) and T cell immunoglobulin and mucin-domain containing-3 (TIM-3). Yet, the molecular and cellular mechanisms by which either receptor functions to mediate its inhibitory effects are still poorly understood. Similarly, little is known on the differential effects of dual, compared with single, checkpoint inhibition.
View Article and Find Full Text PDFFixed-charge (non-polarizable) forcefields are accurate and computationally efficient tools for modeling the molecular dynamics of nucleic acid polymers, particularly DNA, well into the µs timescale. The continued utility of these forcefields depends in part on expanding the residue set in step with advancing nucleic acid chemistry and biology. A key step in parameterizing new residues is charge derivation which is self-consistent with the existing residues.
View Article and Find Full Text PDFProteins are inherently dynamic, and proper enzyme function relies on conformational flexibility. In this study, we demonstrated how an active site residue changes an enzyme's reactivity by modulating fluctuations between conformational states. Replacement of tyrosine 249 (Y249) with phenylalanine in the active site of the flavin-dependent d-arginine dehydrogenase yielded an enzyme with both an active yellow FAD (Y249F-y) and an inactive chemically modified green FAD, identified as 6-OH-FAD (Y249F-g) through various spectroscopic techniques.
View Article and Find Full Text PDFTranscription factors comprise a major reservoir of conformational disorder in the eukaryotic proteome. The hematopoietic master regulator PU.1 presents a well-defined model of the most common configuration of intrinsically disordered regions (IDRs) in transcription factors.
View Article and Find Full Text PDFHigh T-cell infiltration in colorectal cancer (CRC) correlates with a favorable disease outcome and immunotherapy response. This, however, is only observed in a small subset of CRC patients. A better understanding of the factors influencing tumor T-cell responses in CRC could inspire novel therapeutic approaches to achieve broader immunotherapy responsiveness.
View Article and Find Full Text PDFG-Quadruplex DNA has been recognized as a highly appealing target for the development of new selective chemotherapeutics, which could result in markedly reduced toxicity toward normal cells. In particular, the cyanine dyes that bind selectively to G-quadruplex structures without targeting duplex DNA have attracted attention due to their high amenability to structural modifications that allows fine-tuning of their biomolecular interactions. We have previously reported pentamethine and symmetric trimethine cyanines designed to effectively bind G-quadruplexes through end stacking interactions.
View Article and Find Full Text PDFNMR spectroscopy is a versatile tool for determining the structure and dynamics of nucleic acids under solution conditions. In this unit, we provide an overview and detail of the experiments and methods used in our laboratory to determine the structure of oligonucleotides at natural abundance, thus limiting our approach to H, C, and P NMR techniques. Isotopic labeling is heavily used in RNA NMR studies, however, labeling of DNA is still less common and, if modified nucleotides are investigated, is exceptionally expensive or not feasible.
View Article and Find Full Text PDFThe high-resolution NMR structure of the first heterocyclic, non-amide, organic cation that strongly and selectively recognizes mixed AT/GC bp (bp=base pair) sequences of DNA in a 1:1 complex is described. Compound designs of this type provide essential methods for control of functional, non-genomic DNA sequences and have broad cell uptake capability, based on studies from animals to humans. The high-resolution structural studies described in this report are essential for understanding the molecular basis for the sequence-specific binding as well as for new ideas for additional compound designs for sequence-specific recognition.
View Article and Find Full Text PDFThe eponymous DNA-binding domain of ETS (26 ransformation-pecific) transcription factors binds a single sequence-specific site as a monomer over a single helical turn. Following our previous observation by titration calorimetry that the ETS member PU.1 dimerizes sequentially at a single sequence-specific DNA-binding site to form a 2:1 complex, we have carried out an extensive spectroscopic and biochemical characterization of site-specific PU.
View Article and Find Full Text PDFInteractions between nucleic acids and proteins are critical for many cellular processes, and their study is of utmost importance to many areas of biochemistry, cellular biology, and virology. Here, we introduce a new analytical method based on sedimentation velocity (SV) analytical ultracentrifugation, in combination with a novel multiwavelength detector to characterize such interactions. We identified the stoichiometry and molar mass of a complex formed during the interaction of a West Nile virus RNA stem loop structure with the human T cell-restricted intracellular antigen-1 related protein.
View Article and Find Full Text PDFSingle ribonucleotide intrusions represent the most common nonstandard nucleotide type found incorporated in genomic DNA, yet little is known of their structural impact. This lesion incurs genomic instability in addition to affecting the physical properties of the DNA. To probe for structural and dynamic effects of single ribonucleotides in various sequence contexts-AxC, CxG, and GxC, where x=rG or dG-we report the structures of three single-ribonucleotide-containing DNA duplexes and the corresponding DNA controls.
View Article and Find Full Text PDFA truly universal nucleobase enables a host of novel applications such as simplified templates for PCR primers, randomized sequencing and DNA based devices. A universal base must pair indiscriminately to each of the canonical bases with little or preferably no destabilization of the overall duplex. In reality, many candidates either destabilize the duplex or do not base pair indiscriminatingly.
View Article and Find Full Text PDFSequence-specific binding to DNA is crucial for targeting transcription factor-DNA complexes to modulate gene expression. The heterocyclic diamidine, DB2277, specifically recognizes a single G•C base pair in the minor groove of mixed base pair sequences of the type AAAGTTT. NMR spectroscopy reveals the presence of major and minor species of the bound compound.
View Article and Find Full Text PDFArginine methylation is important in biological systems. Recent studies link the deregulation of protein arginine methyltransferases with certain cancers. To assess the impact of methylation on interaction with other biomolecules, the pKa values of methylated arginine variants were determined using NMR data.
View Article and Find Full Text PDFBackground: Conventional laparoscopic surgery uses CO2 that is dry and cold, which can damage peritoneal surfaces. It is speculated that disseminated cancer cells may adhere to such damaged peritoneum and metastasize. We hypothesized that insufflation using humidified-warm CO2, which has been shown to reduce mesothelial damage, will also ameliorate peritoneal inflammation and tumor cell implantation compared to conventional dry-cold CO2.
View Article and Find Full Text PDFCholine oxidase catalyzes the oxidation of choline to glycine betaine through a two-step, four-electron reaction with betaine aldehyde as an intermediate. Oxygen is the final electron acceptor. Alcohol oxidation is initiated by the removal of the substrate hydroxyl proton by an unknown active site residue with a pKa value of ∼7.
View Article and Find Full Text PDFLoss of heterozygosity (LOH) of the adenomatous polyposis coli (APC) gene triggers a series of molecular events leading to intestinal adenomagenesis. Haploinsufficiency of the cohesin Rad21 influences multiple initiating events in colorectal cancer (CRC). We identify Rad21 as a gatekeeper of LOH and a β-catenin target gene and provide evidence that Wnt pathway activation drives RAD21 expression in human CRC.
View Article and Find Full Text PDFDeletion studies confirm Wnt, Notch and Myb transcriptional pathway engagement in intestinal tumorigenesis. Nevertheless, their contrasting and combined roles when activated have not been elucidated. This is important as these pathways are not ablated but rather are aberrantly activated during carcinogenesis.
View Article and Find Full Text PDFThe units of RNA, termed ribonucleoside monophosphates (rNMPs), have been recently found as the most abundant defects present in DNA. Despite the relevance, it is largely unknown if and how rNMPs embedded in DNA can change the DNA structure and mechanical properties. Here, we report that rNMPs incorporated in DNA can change the elastic properties of DNA.
View Article and Find Full Text PDF