Publications by authors named "Markus Fusser"

Many promising pharmaceutically active compounds have low solubility in aqueous environments and their encapsulation into efficient drug delivery vehicles is crucial to increase their bioavailability. Lipodisq nanoparticles are approximately 10 nm in diameter and consist of a circular phospholipid bilayer, stabilized by an annulus of SMA (a hydrolysed copolymer of styrene and maleic anhydride). SMA is used extensively in structural biology to extract and stabilize integral membrane proteins for biophysical studies.

View Article and Find Full Text PDF

The effect of poly(2-ethyl-butyl cyanoacrylate) nanoparticles containing the cytotoxic drug cabazitaxel was studied in three breast cancer cell lines and one basal-like patient-derived xenograft model grown in the mammary fat pad of immunodeficient mice. Nanoparticle-encapsulated cabazitaxel had a much better efficacy than similar concentrations of free drug in the basal-like patient-derived xenograft and resulted in complete remission of 6 out of 8 tumors, whereas free drug gave complete remission only with 2 out of 9 tumors. To investigate the different efficacies obtained with nanoparticle-encapsulated versus free cabazitaxel, mass spectrometry quantification of cabazitaxel was performed in mice plasma and selected tissue samples.

View Article and Find Full Text PDF

Doxorubicin, a widely used chemotherapeutic drug, has several potential high-risk side effects including cardiomyopathy. Furthermore, cellular resistance to this drug develops with time. By using liposomes as carrier vesicles both the side effects and drug resistance might be avoided.

View Article and Find Full Text PDF

Sertoli cells have dual roles during the cells' lifetime. In the juvenile mammal, Sertoli cells proliferate and create the structure of the testis, and during puberty they cease to proliferate and take on the adult role of supporting germ cells through spermatogenesis. Accordingly, many genes expressed in Sertoli cells during testis formation are repressed during spermatogenesis.

View Article and Find Full Text PDF

Objective: To assess whether men with reduced semen quality exhibit genetic variants in the genes coding for the messenger RNA methylation erasers FTO and ALKBH5.

Design: DNA of men undergoing infertility work-up was extracted and the FTO and ALKBH5 genes were sequenced. Statistical analysis was used to study the correlation between the identified ALKBH5 and FTO variants and sperm quality.

View Article and Find Full Text PDF

Valosin-containing protein (VCP) is a homohexameric ATPase involved in a multitude cellular processes and it was recently shown that VCP is trimethylated at lysine 315 by the VCP lysine methyltransferase (VCPKMT). Here, we generated and validated a constitutive knockout mouse by targeting exon 1-4 of the Vcpkmt gene. We show that Vcpkmt is ubiquitously expressed in all tissues examined and confirm the sub-cellular localization to the cytoplasm.

View Article and Find Full Text PDF

5-hydroxymethylcytosine (5hmC) has been suggested to be involved in various nucleic acid transactions and cellular processes, including transcriptional regulation, demethylation of 5-methylcytosine and stem cell pluripotency. We have identified an activity that preferentially catalyzes the cleavage of double-stranded 5hmC-modified DNA. Using biochemical methods we purified this activity from mouse liver extracts and demonstrate that the enzyme responsible for the cleavage of 5hmC-modified DNA is Endonuclease G (EndoG).

View Article and Find Full Text PDF

ALKBH4, an AlkB homologue in the 2-oxoglutarate and Fe2+ dependent hydroxylase family, has previously been shown to regulate the level of monomethylated lysine-84 in actin and thereby indirectly influences the ability of non-muscular myosin II to bind actin filaments. ALKBH4 modulates fundamental processes including cytokinesis and cell motility, and its depletion is lethal during early preimplantation embryo stage. The aim of this study was to investigate the effect of ALKBH4 deficiency in a physiological context, using inducible Alkbh4 knockout mice.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how post-transcriptional modifications, specifically demethylation of actin by ALKBH4, affect actomyosin dynamics, a crucial process for cell movement and division.
  • ALKBH4 removes a methyl group from the K84 position on actin; its absence leads to improper actin-myosin interactions, impaired cell functions like cytokinesis, and increased levels of methylated actin.
  • Mice lacking the ALKBH4 gene show severe developmental issues and early embryonic lethality, indicating the importance of this modification in embryonic development and cellular processes.
View Article and Find Full Text PDF

Oxidative DNA modifications such as 7,8-dihydro-8-oxoguanine (8-oxoG) are generated endogenously in apparently all living cells. The defect of the repair of 8-oxoG in Csb(m/m)Ogg1⁻(/)⁻ mice results in elevated basal levels of these lesions and increased frequencies of spontaneous mutations, which initiate tumorigenesis in the liver if cell proliferation is stimulated. Here, we describe that the phytoalexin resveratrol, applied either for 7 days per gavage (100 mg/kg body wt) or for 3-9 months in the diet (0.

View Article and Find Full Text PDF

DNA-repair mechanisms enable cells to maintain their genetic information by protecting it from mutations that may cause malignant growth. Recent evidence suggests that specific DNA-repair enzymes contain ISCs (iron-sulfur clusters). The nuclearencoded protein frataxin is essential for the mitochondrial biosynthesis of ISCs.

View Article and Find Full Text PDF

Telomere shortening represents a causal factor of cellular senescence. At the same time, several lines of evidence indicate a pivotal role of oxidative DNA damage for the aging process in vivo. A causal connection between the two observations was suggested by experiments showing accelerated telomere shorting under conditions of oxidative stress in cultured cells, but has never been studied in vivo.

View Article and Find Full Text PDF

Aprataxin, defective in the neurodegenerative disorder ataxia oculomotor apraxia type 1, resolves abortive DNA ligation intermediates during DNA repair. Here, we demonstrate that aprataxin localizes at sites of DNA damage induced by high LET radiation and binds to mediator of DNA-damage checkpoint protein 1 (MDC1/NFBD1) through a phosphorylation-dependent interaction. This interaction is mediated via the aprataxin FHA domain and multiple casein kinase 2 di-phosphorylated S-D-T-D motifs in MDC1.

View Article and Find Full Text PDF

A defective response to DNA damage is observed in several human autosomal recessive ataxias with oculomotor apraxia, including ataxia-telangiectasia. We report that senataxin, defective in ataxia oculomotor apraxia (AOA) type 2, is a nuclear protein involved in the DNA damage response. AOA2 cells are sensitive to H2O2, camptothecin, and mitomycin C, but not to ionizing radiation, and sensitivity was rescued with full-length SETX cDNA.

View Article and Find Full Text PDF