Chaotic transport in Hamiltonian systems is often restricted due to the presence of partial barriers, leading to a limited flux between different regions in phase space. Typically, the most restrictive partial barrier in a 2D symplectic map is based on a cantorus, the Cantor set remnants of a broken 1D torus. For a 4D symplectic map, we establish a partial barrier based on what we call a cantorus-NHIM-a normally hyperbolic invariant manifold with the structure of a cantorus.
View Article and Find Full Text PDFNonlinear resonances in the classical phase space lead to a significant enhancement of tunneling. We demonstrate that the double resonance gives rise to a complicated tunneling peak structure. Such double resonances occur in Hamiltonian systems with an at least four-dimensional phase space.
View Article and Find Full Text PDFThe dynamics in three-dimensional (3D) billiards leads, using a Poincaré section, to a four-dimensional map, which is challenging to visualize. By means of the recently introduced 3D phase-space slices, an intuitive representation of the organization of the mixed phase space with regular and chaotic dynamics is obtained. Of particular interest for applications are constraints to classical transport between different regions of phase space which manifest in the statistics of Poincaré recurrence times.
View Article and Find Full Text PDF