Developments in microarray technology promise to lead to great advancements in the biomedical and biological field. However, implementation of these analytical tools often relies on signal amplification strategies that are essential to reach the sensitivity levels required for a variety of biological applications. This is true especially for reverse phase arrays where a complex biological sample is directly immobilized on the chip.
View Article and Find Full Text PDFPolymer brushes represent an interesting platform for the development of high-capacity protein binding surfaces. Whereas the protein binding properties of polymer brushes have been investigated before, this manuscript evaluates the feasibility of poly(glycidyl methacrylate) (PGMA) and PGMA-co-poly(2-(diethylamino)ethyl methacrylate) (PGMA-co-PDEAEMA) (co)polymer brushes grown via surface-initiated atom transfer radical polymerization (SI-ATRP) as protein reactive substrates in a commercially available microarray system using tantalum-pentoxide-coated optical waveguide-based chips. The performance of the polymer-brush-based protein microarray chips is assessed using commercially available dodecylphosphate (DDP)-modified chips as the benchmark.
View Article and Find Full Text PDFThe definite molecular diagnosis in patients with muscular dystrophies often requires the assessment of muscular expression of multiple proteins in small amounts of muscle tissue. The sample material obtained in muscle biopsies is limited and the measurement of multiple proteins is often restricted to conventional, non-quantitative assays, i.e.
View Article and Find Full Text PDFProtein kinases drive the cellular signal transduction networks that underlie the regulation of growth, survival and differentiation. To repair the deregulations of signaling cascades that are associated with numerous disease states, therapeutic strategies, based on controlling aberrant protein kinase activity, are emerging. To develop such therapies it is crucial to have knowledge of the full complexity of signaling networks at a molecular level in order to understand the information flow through signaling cascades and their cell and tissue specificity.
View Article and Find Full Text PDFControlling aberrant protein kinase activity is a promising strategy for a variety of diseases, particularly cancer. Hence, the development of kinase inhibitors is currently a focal point for pharmaceutical research. In this study we utilize a chip-based reverse phase protein array (RPA) platform for profiling of kinase inhibitors in cell-based assays.
View Article and Find Full Text PDFBacterial identification relies primarily on culture-based methodologies and requires 48-72 h to deliver results. We developed and used i) a bioinformatics strategy to select oligonucleotide signature probes, ii) a rapid procedure for RNA labelling and hybridization, iii) an evanescent-waveguide oligoarray with exquisite signal/noise performance, and iv) informatics methods for microarray data analysis. Unique 19-mer signature oligonucleotides were selected in the 5'-end of 16s rDNA genes of human pathogenic bacteria.
View Article and Find Full Text PDFDNA microarrays have become a powerful tool for expression profiling and other genomics applications. A critical factor for their sensitivity is the interfacial coating between the chip substrate and the bound DNA. Such a coating has to embrace the divergent requirements of tightly binding the capture probe DNA during the spotting process and of minimizing the nonspecific binding of target DNA during the hybridization assay.
View Article and Find Full Text PDFProtein microarrays are considered an enabling technology, which will significantly expand the scope of current protein expression and protein interaction analysis. Current technologies, such as two-dimensional gel electrophoresis (2-DE) in combination with mass spectrometry, allowing the identification of biologically relevant proteins, have a high resolving power, but also considerable limitations. As was demonstrated by Gygi et al.
View Article and Find Full Text PDFHighly efficient capillary electrochromatographic separations of cardiac glycosides and other steroids are presented. Employing butyl-derivatized silica particles as stationary phase resulted in a nearly three times faster electroosmotic flow (EOF) compared to capillary electrochromatography (CEC) with octadecyl silica particles. On-column focusing with a preconcentration factor of 180 was performed and separation efficiencies of up to 240,000 plates per meter were obtained.
View Article and Find Full Text PDF