Publications by authors named "Markus Bohn"

Article Synopsis
  • - The text discusses a new high-throughput method for discovering broadly-neutralizing monoclonal antibodies, which are crucial for treating infections and animal venom poisoning, using phage display technology and consensus antigens.
  • - The approach was applied to create a consensus sphingomyelinase from venom sources like the recluse spider and Gadim scorpion, involving multiple rounds of selection and screening to find effective antibodies.
  • - The results showed that this method produced two specific antibodies that bind and neutralize toxic activities from venom, proving it to be more effective than traditional methods for yielding cross-neutralizing antibodies.
View Article and Find Full Text PDF
Article Synopsis
  • Firefly luciferase shares similarities with fatty acyl-CoA synthetases found in non-luminescent insects.
  • Researchers determined the crystal structure of a specific enzyme from fruit flies (CG6178) and created an artificial luciferase named FruitFire by mutating its active site.
  • FruitFire significantly improved bioluminescence imaging in mice, demonstrating the potential for engineering bioluminescence in various enzymes from non-luminescent organisms for future applications.
View Article and Find Full Text PDF

Single-molecule electron sources of fullerenes driven via constant electric fields, approximately 1 nm in size, produce peculiar emission patterns, such as a cross or a two-leaf pattern. By illuminating the electron sources with femtosecond light pulses, we discovered that largely modulated emission patterns appeared from single molecules. Our simulations revealed that emission patterns, which have been an intractable question for over seven decades, represent single-molecule molecular orbitals.

View Article and Find Full Text PDF

The urokinase-type plasminogen activator receptor (uPAR) is an essential regulator for cell signaling in tumor cell proliferation, adhesion, and metastasis. The ubiquitous nature of uPAR in many aggressive cancer types makes uPAR an attractive target for immunotherapy. Here, we present a rapid and successful workflow for developing cross-reactive anti-uPAR recombinant antibodies (rAbs) using high-throughput optofluidic screening of single B-cells from human uPAR-immunized mice.

View Article and Find Full Text PDF

Applying strong direct current (DC) electric fields on the apex of a sharp metallic tip, electrons can be radially emitted from the apex to vacuum. Subsequently, they magnify the nanoscopic information on the apex, which serves as a field emission microscope (FEM). When depositing molecules on such a tip, peculiar electron emission patterns such as clover leaves appear.

View Article and Find Full Text PDF

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by binding of the viral Spike protein to host receptor angiotensin-converting enzyme 2 (ACE2), followed by fusion of viral and host membranes. Although antibodies that block this interaction are in emergency use as early coronavirus disease 2019 (COVID-19) therapies, the precise determinants of neutralization potency remain unknown. We discovered a series of antibodies that potently block ACE2 binding but exhibit divergent neutralization efficacy against the live virus.

View Article and Find Full Text PDF

antibody selection against pathogens from naïve combinatorial libraries can yield various classes of antigen-specific binders that are distinct from those evolved from natural infection. Also, rapid neutralizing antibody discovery can be made possible by a strategy that selects for those interfering with pathogen and host interaction. Here we report the discovery of antibodies that neutralize SARS-CoV-2, the virus responsible for the COVID-19 pandemic, from a highly diverse naïve human Fab library.

View Article and Find Full Text PDF

An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection.

View Article and Find Full Text PDF

A newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells.

View Article and Find Full Text PDF

Protein-protein interactions between E3 ubiquitin ligases and protein termini help shape the proteome. These interactions are sensitive to proteolysis, which alters the ensemble of cellular N and C termini. Here we describe a mechanism wherein caspase activity reveals latent C termini that are then recognized by the E3 ubiquitin ligase CHIP.

View Article and Find Full Text PDF

The immunoproteasome (iP) has been proposed to perform specialized roles in MHC class I antigen presentation, cytokine modulation, and T cell differentiation and has emerged as a promising therapeutic target for autoimmune disorders and cancer. However, divergence in function between the iP and the constitutive proteasome (cP) has been unclear. A global peptide library-based screening strategy revealed that the proteasomes have overlapping but distinct substrate specificities.

View Article and Find Full Text PDF

Enzymes that modify the proteome, referred to as post-translational modifying (PTM) enzymes, are central regulators of cellular signaling. Determining the substrate specificity of PTM enzymes is a critical step in unraveling their biological functions both in normal physiological processes and in disease states. Advances in peptide chemistry over the last century have enabled the rapid generation of peptide libraries for querying substrate recognition by PTM enzymes.

View Article and Find Full Text PDF

Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive.

View Article and Find Full Text PDF

High-throughput crystallographic approaches require integrated software solutions to minimize the need for manual effort. REdiii is a system that allows fully automated crystallographic structure solution by integrating existing crystallographic software into an adaptive and partly autonomous workflow engine. The program can be initiated after collecting the first frame of diffraction data and is able to perform processing, molecular-replacement phasing, chain tracing, ligand fitting and refinement without further user intervention.

View Article and Find Full Text PDF