Publications by authors named "Markus Boettcher"

The endothelium-derived hyperpolarizing factor (EDHF) contributes critically to the regulation of vascular tone. Its dependency on direct signaling through myoendothelial gap junctions composed of connexins (Cx) is controversially discussed. We studied the impact of Cx40 in EDHF-type dilations in vivo and in vitro (wire and pressure myography) in small arteries (A.

View Article and Find Full Text PDF

Background: Angiogenesis is of major interest in developmental biology and cancer research. Different experimental approaches are available to study angiogenesis that have in common the need for microscopy, image acquisition, and analysis. Problems that are encountered hereby are the size of the structures, which requires generation of composite images and difficulties in quantifying angiogenic activity reliably and rapidly.

View Article and Find Full Text PDF

Gap junctions interconnect vascular cells homocellularly, thereby allowing the spread of signals along the vessel wall, which serve to coordinate vessel behavior. In addition, gap junctions provide heterocellular coupling between endothelial and vascular smooth muscle cells, creating so-called myoendothelial gap junctions (MEGJs). Endothelial cells control vascular tone by the release of factors that relax vascular smooth muscle.

View Article and Find Full Text PDF

Gap junctions are formed in the cardiovascular system by connexin40 (Cx40), Cx37, Cx43, and Cx45. These low resistance channels allow the transfer of ions and small molecules between cells. The longitudinal coupling of endothelial and smooth muscle cells via gap junctions allows the spread of changes in membrane potential along the vascular wall and hence provides conduction pathways within the vessel itself.

View Article and Find Full Text PDF