Publications by authors named "Markus Basan"

Microbial communities are ubiquitous in nature and play an important role in ecology and human health. Cross-feeding is thought to be core to microbial communities, though it remains unclear precisely why it emerges. Why have multi-species microbial communities evolved in many contexts and what protects microbial consortia from invasion? Here, we review recent insights into the emergence and stability of coexistence in microbial communities.

View Article and Find Full Text PDF

In bacteria, algae, fungi, and plant cells, the wall must expand in concert with cytoplasmic biomass production, otherwise cells would experience toxic molecular crowding or lyse. But how cells achieve expansion of this complex biomaterial in coordination with biosynthesis of macromolecules in the cytoplasm remains unexplained, although recent works have revealed that these processes are indeed coupled. Here, we report a striking increase of turgor pressure with growth rate in suggesting that the speed of cell wall expansion is controlled via turgor.

View Article and Find Full Text PDF

Bacteria like E. coli grow at vastly different rates on different substrates, however, the precise reason for this variability is poorly understood. Different growth rates have been attributed to 'nutrient quality', a key parameter in bacterial growth laws.

View Article and Find Full Text PDF

High-content imaging for compound and genetic profiling is popular for drug discovery but limited to endpoint images of fixed cells. Conversely, electronic-based devices offer label-free, live cell functional information but suffer from limited spatial resolution or throughput. Here, we introduce a semiconductor 96-microplate platform for high-resolution, real-time impedance imaging.

View Article and Find Full Text PDF

Mechanical forces have been shown to influence cellular decisions to grow, die, or differentiate, through largely mysterious mechanisms. Separately, changes in resting membrane potential have been observed in development, differentiation, regeneration, and cancer. We now demonstrate that membrane potential is the central mediator of cellular response to mechanical pressure.

View Article and Find Full Text PDF

In bacteria, algae, fungi, and plant cells, the wall must expand in concert with cytoplasmic biomass production, otherwise cells would experience toxic molecular crowdingor lyse. But how cells achieve expansion of this complex biomaterial in coordination with biosynthesis of macromolecules in the cytoplasm remains unexplained, although recent works have revealed that these processes are indeed coupled. Here, we report a striking increase of turgor pressure with growth rate in , suggesting that the speed of cell wall expansion is controlled via turgor.

View Article and Find Full Text PDF
Article Synopsis
  • Bacteria exhibit varying growth rates on different nutrients due to factors like 'nutrient quality', but the reasons behind this variability are not fully understood.
  • Researchers found that while nutrient quality impacts the investment in specific transporters and enzymes, it is not the main factor limiting growth rate.
  • By reengineering metabolic pathways, they transformed mannose from a poor nutrient to an effective one, demonstrating that growth can be optimized with trade-offs in other cellular functions, suggesting nutrient quality is adaptable based on resource allocation.
View Article and Find Full Text PDF

According to a widely accepted paradigm of microbiology, steady-state growth rates are determined solely by current growth conditions and adaptations between growth states are rapid, as recently recapitulated by simple resource allocation models. However, even in microbes overlapping regulatory networks can yield multi-stability or long-term cellular memory. Species like and "distinguish" distinct histories for the commitment to sporulation, but it is unclear if these states can persist over many generations.

View Article and Find Full Text PDF

Evolution of complex communities of coexisting microbes remains poorly understood. The long-term evolution experiment on Escherichia coli (LTEE) revealed the spontaneous emergence of stable coexistence of multiple ecotypes, which persisted for more than 14,000 generations of continuous evolution. Here, using a combination of experiments and computer simulations, we show that the emergence and persistence of this phenomenon can be explained by the combination of two interacting trade-offs, rooted in biochemical constraints: First, faster growth is enabled by higher fermentation and obligate acetate excretion.

View Article and Find Full Text PDF

Profiling compounds and genetic perturbations via high-content imaging has become increasingly popular for drug discovery, but the technique is limited to endpoint images of fixed cells. In contrast, electronic-based devices offer label-free, functional information of live cells, yet current approaches suffer from low-spatial resolution or single-well throughput. Here, we report a semiconductor 96-microplate platform designed for high-resolution real-time impedance "imaging" at scale.

View Article and Find Full Text PDF

Bacteria reorganize their physiology upon entry to stationary phase. What part of this reorganization improves starvation survival is a difficult question because the change in physiology includes a global reorganization of the proteome, envelope, and metabolism of the cell. In this work, we used several trade-offs between fast growth and long survival to statistically score over 2,000 Escherichia coli proteins for their global correlation with death rate.

View Article and Find Full Text PDF

Adaptive stress resistance in microbes is mostly attributed to the expression of stress response genes, including heat-shock proteins. Here, we report a response of E. coli to heat stress caused by degradation of an enzyme in the methionine biosynthesis pathway (MetA).

View Article and Find Full Text PDF

Cell mass and chemical composition are important aggregate cellular properties that are especially relevant to physiological processes, such as growth control and tissue homeostasis. Despite their importance, it has been difficult to measure these features quantitatively at the individual cell level in intact tissue. Here, we introduce normalized Raman imaging (NoRI), a stimulated Raman scattering (SRS) microscopy method that provides the local concentrations of protein, lipid, and water from live or fixed tissue samples with high spatial resolution.

View Article and Find Full Text PDF

Electrode-based impedance and electrochemical measurements can provide cell-biology information that is difficult to obtain using optical-microscopy techniques. Such electrical methods are non-invasive, label-free, and continuous, eliminating the need for fluorescence reporters and overcoming optical imaging's throughput/temporal resolution limitations. Nonetheless, electrode-based techniques have not been heavily employed because devices typically contain few electrodes per well, resulting in noisy aggregate readouts.

View Article and Find Full Text PDF

Central carbon metabolism is highly conserved across microbial species, but can catalyze very different pathways depending on the organism and their ecological niche. Here, we study the dynamic reorganization of central metabolism after switches between the two major opposing pathway configurations of central carbon metabolism, glycolysis, and gluconeogenesis in Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putida. We combined growth dynamics and dynamic changes in intracellular metabolite levels with a coarse-grained model that integrates fluxes, regulation, protein synthesis, and growth and uncovered fundamental limitations of the regulatory network: After nutrient shifts, metabolite concentrations collapse to their equilibrium, rendering the cell unable to sense which direction the flux is supposed to flow through the metabolic network.

View Article and Find Full Text PDF

This piece discusses how the different observations of two independent studies (Kotte et al, 2014; Basan et al, 2020), regarding population-level heterogeneity and lag times during diauxic shift, can be largely explained by different experimental protocols.

View Article and Find Full Text PDF

The rate of cell growth is crucial for bacterial fitness and drives the allocation of bacterial resources, affecting, for example, the expression levels of proteins dedicated to metabolism and biosynthesis. It is unclear, however, what ultimately determines growth rates in different environmental conditions. Moreover, increasing evidence suggests that other objectives are also important, such as the rate of physiological adaptation to changing environments.

View Article and Find Full Text PDF

Elucidating strategies of resource allocation and metabolism is crucial for a better understanding of microbial phenotypes. In particular, uncovering the governing principles underlying these processes would be a crucial step for achieving a central aim of systems microbiology, which is to quantitatively predict phenotypes of microbial cells or entire populations in diverse conditions. Here, some of the key concepts for understanding cellular resource allocation and metabolism that have been suggested over the past years are reviewed.

View Article and Find Full Text PDF

Overflow metabolism in the presence of oxygen occurs at fast growth rates in a wide range of organisms including bacteria, yeast and cancer cells and plays an important role in biotechnology during production of proteins or metabolic compounds. As recently suggested, overflow metabolism can be understood in terms of proteome allocation, since fermentation has lower proteome cost for energy production than respiration. Here, we demonstrate that ArcA overexpression in aerobic conditions, results in downregulation of respiratory pathways and enhanced growth rates on glycolytic substrates of E.

View Article and Find Full Text PDF

Overflow metabolism refers to the seemingly wasteful strategy in which cells use fermentation instead of the more efficient respiration to generate energy, despite the availability of oxygen. Known as the Warburg effect in the context of cancer growth, this phenomenon occurs ubiquitously for fast-growing cells, including bacteria, fungi and mammalian cells, but its origin has remained unclear despite decades of research. Here we study metabolic overflow in Escherichia coli, and show that it is a global physiological response used to cope with changing proteomic demands of energy biogenesis and biomass synthesis under different growth conditions.

View Article and Find Full Text PDF

Understanding how the homeostasis of cellular size and composition is accomplished by different organisms is an outstanding challenge in biology. For exponentially growing Escherichia coli cells, it is long known that the size of cells exhibits a strong positive relation with their growth rates in different nutrient conditions. Here, we characterized cell sizes in a set of orthogonal growth limitations.

View Article and Find Full Text PDF

A central aim of cell biology was to understand the strategy of gene expression in response to the environment. Here, we study gene expression response to metabolic challenges in exponentially growing Escherichia coli using mass spectrometry. Despite enormous complexity in the details of the underlying regulatory network, we find that the proteome partitions into several coarse-grained sectors, with each sector's total mass abundance exhibiting positive or negative linear relations with the growth rate.

View Article and Find Full Text PDF

Cells migrate collectively during development, wound healing, and cancer metastasis. Recently, a method has been developed to recover intercellular stress in monolayers from measured traction forces upon the substrate. To calculate stress maps in two dimensions, the cell sheet was assumed to behave like an elastic material, and it remains unclear to what extent this assumption is valid.

View Article and Find Full Text PDF

Recent experiments have shown that spreading epithelial sheets exhibit a long-range coordination of motility forces that leads to a buildup of tension in the tissue, which may enhance cell division and the speed of wound healing. Furthermore, the edges of these epithelial sheets commonly show finger-like protrusions whereas the bulk often displays spontaneous swirls of motile cells. To explain these experimental observations, we propose a simple flocking-type mechanism, in which cells tend to align their motility forces with their velocity.

View Article and Find Full Text PDF