The implementation of graphene in semiconducting technology requires precise knowledge about the graphene-semiconductor interface. In our work the structure and electronic properties of the graphene/n-Ge(110) interface are investigated on the local (nm) and macro (from μm to mm) scales via a combination of different microscopic and spectroscopic surface science techniques accompanied by density functional theory calculations. The electronic structure of freestanding graphene remains almost completely intact in this system, with only a moderate n-doping indicating weak interaction between graphene and the Ge substrate.
View Article and Find Full Text PDFWe studied the magnetization dynamics of gadolinium metal after femtosecond laser excitation recording the x-ray magnetic circular dichroism in reflection (XMCD-R) at the Gd M absorption edge. Varying the photon energy of the pump pulse allows us to change the initial energy distribution of photoexcited carriers. The overall similar response for excitation with 0.
View Article and Find Full Text PDFEmploying spin-, time-, and energy-resolved photoemission spectroscopy, we present the first study on the spin polarization of a single electronic state after ultrafast optical excitation. Our investigation concentrates on the majority-spin component of the d-band-derived Gd(0001) surface state d(z(2))(↑). While its binding energy shows a rapid Stoner-like shift by 90 meV with an exponential time constant of τ(E)=0.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2015
We report on a spin-resolved two-photon photoemission study of the Ni(1 1 1) surface states. Nickel thin films were grown by molecular beam epitaxy on a W(1 1 0) substrate. The first image-potential state is used as a sensor to map the spin polarization of the occupied surface states.
View Article and Find Full Text PDFFemtosecond x-ray magnetic circular dichroism was used to study the time-dependent magnetic moment of 4f electrons in the ferromagnets Gd and Tb, which are known for their different spin-lattice coupling. We observe a two-step demagnetization with an ultrafast demagnetization time of 750 fs identical for both systems and slower times which differ sizeably with 40 ps for Gd and 8 ps for Tb. We conclude that spin-lattice coupling in the electronically excited state is enhanced up to 50 times compared to equilibrium.
View Article and Find Full Text PDF