Publications by authors named "Marko Storch"

In their natural environments, microorganisms mainly operate at suboptimal growth conditions with fluctuations in nutrient abundance. The resulting cellular adaptation is subject to conflicting tasks: growth or survival maximisation. Here, we study this adaptation by systematically measuring the impact of a nitrogen downshift to 24 nitrogen sources on cellular metabolism at the single-cell level.

View Article and Find Full Text PDF

The discovery of new compounds with pharmacological properties is usually a lengthy, laborious and expensive process. Thus, there is increasing interest in developing workflows that allow for the rapid synthesis and evaluation of libraries of compounds with the aim of identifying leads for further drug development. Herein, we apply combinatorial synthesis to build a library of 90 iridium(III) complexes (81 of which are new) over two synthesise-and-test cycles, with the aim of identifying potential agents for photodynamic therapy.

View Article and Find Full Text PDF

Synthetic DNA is of increasing demand across many sectors of research and commercial activities. Engineering biology, therapy, data storage and nanotechnology are set for rapid developments if DNA can be provided at scale and low cost. Stimulated by successes in next generation sequencing and gene editing technologies, DNA synthesis is already a burgeoning industry.

View Article and Find Full Text PDF

Standardized deoxyribonucleic acid (DNA) assembly methods utilizing modular components provide a powerful framework to explore designs and iterate through Design-Build-Test-Learn cycles. Biopart Assembly Standard for Idempotent Cloning (BASIC) DNA assembly uses modular parts and linkers, is highly accurate, easy to automate, free for academic and commercial use and enables hierarchical assemblies through an idempotent format. These features enable applications including pathway engineering, ribosome binding site (RBS) tuning, fusion protein engineering and multiplexed guide ribonucleic acid (RNA) expression.

View Article and Find Full Text PDF

Background: Assessing transmission of SARS-CoV-2 by children in schools is of crucial importance to inform public health action. We assessed frequency of acquisition of SARS-CoV-2 by contacts of pupils with COVID-19 in schools and households, and quantified SARS-CoV-2 shedding into air and onto fomites in both settings.

Methods: We did a prospective cohort and environmental sampling study in London, UK in eight schools.

View Article and Find Full Text PDF

Synthetic biology research and its industrial applications rely on deterministic spatiotemporal control of gene expression. Recently, electrochemical control of gene expression has been demonstrated in electrogenetic systems (redox-responsive promoters used alongside redox inducers and electrodes), allowing for the direct integration of electronics with biological processes. However, the use of electrogenetic systems is limited by poor activity, tunability, and standardization.

View Article and Find Full Text PDF
Article Synopsis
  • - The text discusses the development of modular Artificial RNA interference (mARi), a new genetic control tool designed for precise and flexible regulation of gene expression in E. coli.
  • - mARi is characterized by its independence from other genetic elements and its ability to work across different cellular contexts, making it versatile and effective for multiple applications.
  • - This tool is designed for easy integration into existing DNA assembly frameworks, aiming to enhance metabolic engineering and the construction of complex genetic circuits.
View Article and Find Full Text PDF

An overreliance on commercial, kit-based RNA extraction in the molecular diagnoses of infectious disease presents a challenge in the event of supply chain disruptions and can potentially hinder testing capacity in times of need. In this study, we adapted a well-established, robust TRIzol-based RNA extraction protocol into a high-throughput format through miniaturization and automation. The workflow was validated by RT-qPCR assay for SARS-CoV-2 detection to illustrate its scalability without interference to downstream diagnostic sensitivity and accuracy.

View Article and Find Full Text PDF

During the course of the SARS-CoV-2 pandemic reports of mutations with effects on spreading and vaccine effectiveness emerged. Large scale mutation analysis using rapid SARS-CoV-2 Whole Genome Sequencing (WGS) is often unavailable but could support public health organizations and hospitals in monitoring transmission and rising levels of mutant strains. Here we report a novel WGS technique for SARS-CoV-2, the EasySeq™ RC-PCR SARS-CoV-2 WGS kit.

View Article and Find Full Text PDF

Reproducibility is a key challenge of synthetic biology, but the foundation of reproducibility is only as solid as the reference materials it is built upon. Here we focus on the reproducibility of fluorescence measurements from bacteria transformed with engineered genetic constructs. This comparative analysis comprises three large interlaboratory studies using flow cytometry and plate readers, identical genetic constructs, and compatible unit calibration protocols.

View Article and Find Full Text PDF
Article Synopsis
  • There is increasing evidence that tracking the amount of SARS-CoV-2 virus in patients can enhance management strategies for both individual cases and public health at large.!* -
  • A duplex RT-qPCR assay was developed to measure the virus while also checking the validity of the sample through a control gene, helping to identify inadequate samples that might lead to false negatives.!* -
  • The assay demonstrated reliable results across a wide range of virus concentrations, allowing for accurate comparisons between samples and enabling better-informed decisions in healthcare and public health planning.!*
View Article and Find Full Text PDF

Synthetic Biology is a rapidly growing interdisciplinary field that is primarily built upon foundational advances in molecular biology combined with engineering design principles such as modularity and interoperability. The field considers living systems as programmable at the genetic level and has been defined by the development of new platform technologies and methodological advances. A key concept driving the field is the Design-Build-Test-Learn cycle which provides a systematic framework for building new biological systems.

View Article and Find Full Text PDF

CRISPR guide RNAs (gRNAs) can be programmed with relative ease to allow the genetic editing of nearly any DNA or RNA sequence. Here, we propose novel molecular architectures to achieve RNA-dependent modulation of CRISPR activity in response to specific RNA molecules. We designed and tested, in both living cells and cell-free assays for rapid prototyping, -repressed RNA-interacting guide RNA (igRNA) that switch to their active state only upon interaction with small RNA fragments or long RNA transcripts, including pathogen-derived mRNAs of medical relevance such as the human immunodeficiency virus infectivity factor.

View Article and Find Full Text PDF

Multi-part DNA assembly is the physical starting point for many projects in Synthetic and Molecular Biology. The ability to explore a genetic design space by building extensive libraries of DNA constructs is essential for creating programmed biological systems. With multiple DNA assembly methods and standards adopted in the Synthetic Biology community, automation of the DNA assembly process is now receiving serious attention.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has shown how a rapid rise in demand for patient and community sample testing can quickly overwhelm testing capability globally. With most diagnostic infrastructure dependent on specialized instruments, their exclusive reagent supplies quickly become bottlenecks, creating an urgent need for approaches to boost testing capacity. We address this challenge by refocusing the London Biofoundry onto the development of alternative testing pipelines.

View Article and Find Full Text PDF

Biopart Assembly Standard for Idempotent Cloning (BASIC) is a simple, robust, and highly accurate DNA assembly method, which provides 99% correct assemblies for a typical four-part assembly, enabling high efficiency cloning workflows (Storch et al., ACS Synth Biol, https://doi.org/10.

View Article and Find Full Text PDF

Synthetic metabolism allows new metabolic capabilities to be introduced into strains for biotechnology applications. Such engineered metabolic pathways are unlikely to function optimally as initially designed and native metabolism may not efficiently support the introduced pathway without further intervention. To develop our understanding of optimal metabolic engineering strategies, a two-enzyme ethanol pathway consisting of pyruvate decarboxylase and acetaldehyde reductase was introduced into sp.

View Article and Find Full Text PDF

The original version of this Comment contained errors in the legend of Figure 2, in which the locations of the fifteenth and sixteenth GBA members were incorrectly given as '(15) Australian Genome Foundry, Macquarie University; (16) Australian Foundry for Advanced Biomanufacturing, University of Queensland.'. The correct version replaces this with '(15) Australian Foundry for Advanced Biomanufacturing (AusFAB), University of Queensland and (16) Australian Genome Foundry, Macquarie University'.

View Article and Find Full Text PDF

selection of ligand-responsive ribozymes can identify rare, functional sequences from large libraries. While powerful, key caveats of this approach include lengthy and demanding experimental workflows; unpredictable experimental outcomes and unknown functionality of enriched sequences . To address the first of these limitations, we developed Ligase-Assisted Selection for the Enrichment of Responsive Ribozymes (LigASERR).

View Article and Find Full Text PDF
Article Synopsis
  • Biofoundries offer a combined system for quickly designing, building, and testing genetically modified organisms for biotech research and applications.
  • Numerous biofoundries are being developed around the world.
  • A Global Biofoundry Alliance has been created to align and coordinate efforts among these facilities globally.
View Article and Find Full Text PDF

LC3 is a protein that can associate with autophagosomes, autolysosomes, and phagosomes. Here, we show that LC3 can also redistribute toward the damaged Golgi apparatus where it clusters with SQSTM1/p62 and lysosomes. This organelle-specific relocation, which did not involve the generation of double-membraned autophagosomes, could be observed after Golgi damage was induced by various strategies, namely (i) laser-induced localized cellular damage, (ii) local expression of peroxidase and exposure to peroxide and diaminobenzidine, (iii) treatment with the Golgi-tropic photosensitizer redaporfin and light, (iv) or exposure to the Golgi-tropic anticancer peptidomimetic LTX-401.

View Article and Find Full Text PDF

Fluorescent reporters are commonly used to quantify activities or properties of both natural and engineered cells. Fluorescence is still typically reported only in arbitrary or normalized units, however, rather than in units defined using an independent calibrant, which is problematic for scientific reproducibility and even more so when it comes to effective engineering. In this paper, we report an interlaboratory study showing that simple, low-cost unit calibration protocols can remedy this situation, producing comparable units and dramatic improvements in precision over both arbitrary and normalized units.

View Article and Find Full Text PDF

Biopart Assembly Standard for Idempotent Cloning (BASIC) is a simple, accurate, and robust DNA assembly method. The method is based on linker-mediated DNA assembly and provides highly accurate DNA assembly with 99 % correct assemblies for four parts and 90 % correct assemblies for seven parts [1]. The BASIC standard defines a single entry vector for all parts flanked by the same prefix and suffix sequences and its idempotent nature means that the assembled construct is returned in the same format.

View Article and Find Full Text PDF