Publications by authors named "Marko Roblek"

Article Synopsis
  • Monocytes and macrophages promote cancer progression and metastasis, particularly in the lungs, through mechanisms involving specific chemokines like CCR2 and CCR1.
  • Research using mice deficient in Ccr1 and Ccr2 indicated that without these receptors, monocyte recruitment towards the primary chemokine Ccl2 was impaired, leading to reduced lung metastasis in certain tumor types (MC38 and LLC1).
  • The study suggests that while CCR2 handles monocyte release from bone marrow, CCR1 is crucial for their accumulation at tumor sites, indicating distinct roles for these chemokine receptors in cancer metastasis.
View Article and Find Full Text PDF

Orphan solute carrier (SLC) represents a group of membrane transporters whose exact functions and substrate specificities are not known. Elucidating the function and regulation of orphan SLC transporters is not only crucial for advancing our knowledge of cellular and molecular biology but can potentially lead to the development of new therapeutic strategies. Here, we provide evidence for the biological function of a ubiquitous orphan lysosomal SLC, the Major Facilitator Superfamily Domain-containing Protein 1 (MFSD1), which has remained phylogenetically unassigned.

View Article and Find Full Text PDF

Cellular metabolism must adapt to changing demands to enable homeostasis. During immune responses or cancer metastasis, cells leading migration into challenging environments require an energy boost, but what controls this capacity is unclear. Here, we study a previously uncharacterized nuclear protein, Atossa (encoded by CG9005), which supports macrophage invasion into the germband of Drosophila by controlling cellular metabolism.

View Article and Find Full Text PDF

Solute carriers are increasingly recognized as participating in a plethora of pathologies, including cancer. We describe here the involvement of the orphan solute carrier Major Facilitator Superfamily Domain-containing protein 1 (MFSD1) in the regulation of tumor cell migration. Loss of MFSD1 enabled higher levels of metastasis in experimental and spontaneous metastasis mouse models.

View Article and Find Full Text PDF

The infiltration of immune cells into tissues underlies the establishment of tissue-resident macrophages and responses to infections and tumors. Yet the mechanisms immune cells utilize to negotiate tissue barriers in living organisms are not well understood, and a role for cortical actin has not been examined. Here, we find that the tissue invasion of Drosophila macrophages, also known as plasmatocytes or hemocytes, utilizes enhanced cortical F-actin levels stimulated by the Drosophila member of the fos proto oncogene transcription factor family (Dfos, Kayak).

View Article and Find Full Text PDF

TGFβ overexpression is commonly detected in cancer patients and correlates with poor prognosis and metastasis. Cancer progression is often associated with an enhanced recruitment of myeloid-derived cells to the tumor microenvironment. Here we show that functional TGFβ-signaling in myeloid cells is required for metastasis to the lungs and the liver.

View Article and Find Full Text PDF

Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion.

View Article and Find Full Text PDF

Increased levels of the chemokine CCL2 in cancer patients are associated with poor prognosis. Experimental evidence suggests that CCL2 correlates with inflammatory monocyte recruitment and induction of vascular activation, but the functionality remains open. Here, we show that endothelial Ccr2 facilitates pulmonary metastasis using an endothelial-specific Ccr2-deficient mouse model (Ccr2KO).

View Article and Find Full Text PDF

Dynamic polarisation of tumour cells is essential for metastasis. While the role of polarisation during dedifferentiation and migration is well established, polarisation of metastasising tumour cells during phases of detachment has not been investigated. Here we identify and characterise a type of polarisation maintained by single cells in liquid phase termed single-cell (sc) polarity and investigate its role during metastasis.

View Article and Find Full Text PDF

plasmatocytes, the phagocytic cells among hemocytes, are essential for immune responses, but also play key roles from early development to death through their interactions with other cell types. They regulate homeostasis and signaling during development, stem cell proliferation, metabolism, cancer, wound responses, and aging, displaying intriguing molecular and functional conservation with vertebrate macrophages. Given the relative ease of genetics in compared to vertebrates, tools permitting visualization and genetic manipulation of plasmatocytes and surrounding tissues independently at all stages would greatly aid a fuller understanding of these processes, but are lacking.

View Article and Find Full Text PDF

Tumor cells interact with blood constituents and these interactions promote metastasis. Selectins are vascular receptors facilitating interactions of tumor cells with platelets, leukocytes, and endothelium, but the role of endothelial E-selectin remains unclear. Here we show that E-selectin is a major receptor for monocyte recruitment to tumor cell-activated endothelium.

View Article and Find Full Text PDF

The CCL2-CCR2 chemokine axis has an important role in cancer progression where it contributes to metastatic dissemination of several cancer types (e.g., colon, breast, prostate).

View Article and Find Full Text PDF

Enhanced levels of the inflammatory chemokine CCL2 are known to correlate with increased tumorigenesis and metastases, and thereby poor prognosis for cancer patients. The CCL2-CCR2 chemokine axis was shown to facilitate the metastatic initiation through the recruitment of inflammatory monocytes and the activation of endothelial cells at metastatic sites. Both steps are required for efficient cancer cell trans-endothelial migration and seeding in the targeted tissue.

View Article and Find Full Text PDF

Introduction: Heparin is known to efficiently attenuate metastasis in various tumour models by different mechanisms including inhibition of tumour cell contacts with soluble and cellular components such as inhibition of heparanase or P- and L-selectin. We recently showed that heparin efficiently binds to VLA-4 integrin in melanoma cells in vitro. Here we describe VLA-4 integrin as a mediator of melanoma metastasis that is inhibited by the low molecular weight heparin (LMWH) Tinzaparin.

View Article and Find Full Text PDF

Background: Disease-linked missense mutations can alter a protein's function with fatal consequences for the affected individual. How a single amino acid substitution in a protein affects its properties, is difficult to study in the context of the cellular proteome, because mutant proteins can often not be traced in cells due to the lack of mutation-specific detection tools. Antibodies, however, with their exquisite epitope specificity permit the detection of single amino acid substitutions but are not available for the vast majority of disease-causing mutant proteins.

View Article and Find Full Text PDF