Publications by authors named "Marko Punkkinen"

Use and performance criteria of photonic devices increase in various application areas such as information and communication, lighting, and photovoltaics. In many current and future photonic devices, surfaces of a semiconductor crystal are a weak part causing significant photo-electric losses and malfunctions in applications. These surface challenges, many of which arise from material defects at semiconductor surfaces, include signal attenuation in waveguides, light absorption in light emitting diodes, non-radiative recombination of carriers in solar cells, leakage (dark) current of photodiodes, and light reflection at solar cell interfaces for instance.

View Article and Find Full Text PDF

Properties of Ge oxides are significantly different from those of widely used Si oxides. For example, the instability of GeO at device junctions causes electronic defect levels that degrade the performance of Ge-containing devices (e.g.

View Article and Find Full Text PDF

The adsorption of oxygen on bcc Fe-Cr(100) surfaces with two different alloy concentrations is studied using ab initio density functional calculations. Atomic-scale analysis of oxygen-surface interactions is indispensable for obtaining a comprehensive understanding of macroscopic surface oxidation processes. Up to two chromium atoms are inserted into the first two surface layers.

View Article and Find Full Text PDF

Low-temperature (LT) passivation methods (<450 °C) for decreasing defect densities in the material combination of silica (SiO) and silicon (Si) are relevant to develop diverse technologies (e.g., electronics, photonics, medicine), where defects of SiO/Si cause losses and malfunctions.

View Article and Find Full Text PDF

X-ray photoelectron spectroscopy (XPS) is one of the most used methods in a diverse field of materials science and engineering. The elemental core-level binding energies (BE) and core-level shifts (CLS) are determined and interpreted in the XPS. Oxidation is commonly considered to increase the BE of the core electrons of metal and semiconductor elements (i.

View Article and Find Full Text PDF

InAs crystals are emerging materials for various devices like radio frequency transistors and infrared sensors. Control of oxidation-induced changes is essential for decreasing amounts of the harmful InAs surface (or interface) defects because it is hard to avoid the energetically favored oxidation of InAs surface parts in device processing. We have characterized atomic-layer-deposition (ALD) grown AlO/InAs interfaces, preoxidized differently, with synchrotron hard X-ray photoelectron spectroscopy (HAXPES), low-energy electron diffraction, scanning tunneling microscopy, and time-of-flight elastic recoil detection analysis.

View Article and Find Full Text PDF

Oxidation treatment creating a well-ordered crystalline structure has been shown to provide a major improvement for III-V semiconductor/oxide interfaces in electronics. We present this treatment's effects on InSb(111)B surface and its electronic properties with scanning tunneling microscopy and spectroscopy. Possibility to oxidize (111)B surface with parameters similar to the ones used for (100) surface is found, indicating a generality of the crystalline oxidation among different crystal planes, crucial for utilization in nanotechnology.

View Article and Find Full Text PDF

Atomic-scale understanding and processing of the oxidation of III-V compound-semiconductor surfaces are essential for developing materials for various devices (e.g., transistors, solar cells, and light emitting diodes).

View Article and Find Full Text PDF

The work of separation and interfacial energy of the Ni(1 1 1)/Cr(1 1 0) interface are calculated via first-principles methods. Both coherent and semicoherent interfaces are considered. We find that magnetism has a significant effect on the interfacial energy, i.

View Article and Find Full Text PDF

Using ab initio alloy theory, we determine the elastic parameters of ferromagnetic and paramagnetic Fe(1-c)Cr(c) (0 ≤ c ≤ 1) alloys in the body centered cubic crystallographic phase. Comparison with the experimental data demonstrates that the employed theoretical approach accurately describes the observed composition dependence of the polycrystalline elastic moduli. The predicted single-crystal elastic constants follow complex anomalous trends, which are shown to originate from the interplay between magnetic and chemical effects.

View Article and Find Full Text PDF

The polycrystalline elastic parameters of ferromagnetic Fe(1-x)M(x) (M = Al, Si, V, Cr, Mn, Co, Ni, Rh; 0 ≤ x ≤ 0.1) random alloys in the body centered cubic (bcc) crystallographic phase have been calculated using first-principles alloy theory in combination with statistical averaging methods. With a few exceptions, the agreement between the calculated and the available experimental data for the polycrystalline aggregates is satisfactory.

View Article and Find Full Text PDF