Publications by authors named "Marko Orescanin"

The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media.

View Article and Find Full Text PDF

A narrow-band ultrasonic shear-wave imaging technique for estimating phase speed was applied to fresh and thermally damaged porcine liver in vitro. Two constitutive models were applied to the measurements to represent rheological behavior of the tissue and estimate the complex shear modulus at frequencies between 50 and 300 Hz. Our results were compared to similar values from the literature to assess how well models represent liver measurements over a range of shear-wave frequencies, experimental conditions and mammalian species.

View Article and Find Full Text PDF

This paper summarizes dynamic measurements of shear modulus constants acquired for spontaneously growing rat mammary tumors. Measurements are compared with histology to determine tumor types. We also report on 3D shear-wave velocity fields acquired from an inhomogeneous hydrogel phantom with known mechanical properties.

View Article and Find Full Text PDF

An ultrasonic shear wave imaging technique is being developed for estimating the complex shear modulus of biphasic hydropolymers including soft biological tissues. A needle placed in the medium is vibrated along its axis to generate harmonic shear waves. Doppler pulses synchronously track particle motion to estimate shear wave propagation speed.

View Article and Find Full Text PDF

Acoustomotive optical coherence elastography (AM-OCE), a dynamic and internal excitation optical coherence elastography technique, is reported. Acoustic radiation force was used for internal mechanical excitation, and spectral-domain optical coherence tomography was used for detection. Mechanical properties of gelatin tissue phantoms were measured by AM-OCE and verified using rheometry results.

View Article and Find Full Text PDF

An ultrasonic technique for estimating viscoelastic properties of hydrogels, including engineered biological tissues, is being developed. An acoustic radiation force is applied to deform the gel locally while Doppler pulses track the induced movement. The system efficiently couples radiation force to the medium through an embedded scattering sphere.

View Article and Find Full Text PDF