Publications by authors named "Marko Nykanen"

We have systematically analysed the ultrastructure of the early secretory pathway in the Trichoderma reesei hyphae in the wild-type QM6a, cellulase-overexpressing Rut-C30 strain and a Rut-C30 transformant BV47 overexpressing a recombinant BiP1-VenusYFP fusion protein with an endoplasmic reticulum (ER) retention signal. The hyphae were studied after 24 h of growth using transmission electron microscopy, confocal microscopy and quantitative stereological techniques. All three strains exhibited different spatial organisation of the ER at 24 h in both a cellulase-inducing medium and a minimal medium containing glycerol as a carbon source (non-cellulase-inducing medium).

View Article and Find Full Text PDF

Hydrocephalus is a pathological accumulation of cerebrospinal fluid (CSF) in the cerebral ventricles that constitutes a significant cause of neurological morbidity and mortality. Surgical treatment involving shunt placement is associated with a high failure rate and complications due to infection, motivating the development of alternative, non-surgical therapies. Here, we investigated the role in hydrocephalus of water channel aquaporin-1 (AQP1), which is expressed at the apical membrane of choroid plexus epithelium and is believed to facilitate CSF production.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding complex biological structures requires integrating knowledge of their dynamic behavior and molecular machinery, particularly through advanced microscopy techniques.
  • Correlative microscopy, which combines different microscopy methods (like light and electron microscopy), enhances our ability to study cells and tissues at a molecular level, allowing for more reliable observations.
  • This review discusses the history and current methods of correlative microscopy, as well as future trends toward more integrative approaches in imaging and microanalysis.
View Article and Find Full Text PDF

Maturation of barley cysteine endopeptidase B (EPB) in Trichoderma reesei was studied with metabolic in hibitors, Western blotting, and immuno microscopy. The inactive 42-kDa recombinant EPB proprotein, first detected in apical cells, was sequentially processed in a time-dependent manner to a secreted polypeptide of 38.5 kDa, and thereafter, to polypeptides of 37.

View Article and Find Full Text PDF