Publications by authors named "Marko Nagode"

Magnesium alloys, particularly AZ31, are promising materials for the modern automotive industry, offering significant weight savings and environmental benefits. This research focuses on the challenges associated with accurate modelling of multiaxial cyclic plasticity at small strains of AZ31 under low-cycle fatigue conditions. Current modelling approaches, including crystal plasticity and phenomenological plasticity, have been extensively explored.

View Article and Find Full Text PDF

Due to their advantages-longer internal force delay compared to bulk materials, resistance to harsh conditions, damping of a wide frequency spectrum, insensitivity to ambient temperature, high reliability and low cost-granular materials are seen as an opportunity for the development of high-performance, lightweight vibration-damping elements (particle dampers). The performance of particle dampers is affected by numerous parameters, such as the base material, the size of the granules, the flowability, the initial prestress, etc. In this work, a series of experiments were performed on specimens with different combinations of influencing parameters.

View Article and Find Full Text PDF
Article Synopsis
  • This article discusses the modeling of high-strength steel SZBS800's response to strain rates using a combination of standard tensile tests and a unique method involving shooting a ball into specimens.
  • The authors employed the Cowper-Symonds viscoplastic model to factor in strain-rate effects and estimated its parameters through a systematic procedure involving rough estimates and fine-tuning techniques.
  • Optimal parameter values were determined using explicit dynamic simulations and a genetic algorithm, effectively capturing the material's response, although the optimal candidates spanned a wide range for some parameters.
View Article and Find Full Text PDF

Granular materials promise opportunities for the development of high-performance, lightweight vibration-damping elements that provide a high level of safety and comfort. Presented here is an investigation of the vibration-damping properties of prestressed granular material. The material studied is thermoplastic polyurethane (TPU) in Shore 90A and 75A hardness grades.

View Article and Find Full Text PDF

Hidden corrosion in aircraft structures, not detected on time, can have a significant influence on aircraft structural integrity and lead to catastrophic consequences. According to the widely accepted damage tolerance philosophy, non-destructive inspections are performed to assess structural safety and reliability. One of the inspection techniques used for such an inspection is the optical D-Sight technique.

View Article and Find Full Text PDF

The problem of characterizing the structural residual life is one of the most challenging issues of the damage tolerance concept currently applied in modern aviation. Considering the complexity of the internal architecture of composite structures widely applied for aircraft components nowadays, as well as the additional complexity related to the appearance of barely visible impact damage, prediction of the structural residual life is a demanding task. In this paper, the authors proposed a method based on detection of structural damage after low-velocity impact loading and its classification with respect to types of acting stress on constituents of composite structures using the developed processing algorithm based on segmentation of 3D X-ray computed tomograms using the package, real-oriented dual-tree wavelet transform and supporting image processing procedures.

View Article and Find Full Text PDF

Magnesium is one of the lightest metals for structural components. It has been used for producing various lightweight cast components, but the application of magnesium sheet plates is less widespread. There are two reasons for this: (i) its poor formability at ambient temperatures; and (ii) insufficient data on its durability, especially for dynamic loading.

View Article and Find Full Text PDF

The paper presents a method on how the mean stress effect on fatigue damage can be taken into account under an arbitrary low cycle thermo-mechanical loading. From known stress, elastoplastic strain and temperature histories the cycle amplitudes and cycle mean values are extracted and the damage parameter is computed. In contrast to the existing methods the proposed method enables continuous damage parameter computation without the need of waiting for the cycles to close.

View Article and Find Full Text PDF