Addressing the elusive specificity of cysteine cathepsins, which in contrast to caspases and trypsin-like proteases lack strict specificity determining P1 pocket, calls for innovative approaches. Proteomic analysis of cell lysates with human cathepsins K, V, B, L, S, and F identified 30,000 cleavage sites, which we analyzed by software platform SAPS-ESI (Statistical Approach to Peptidyl Substrate-Enzyme Specific Interactions). SAPS-ESI is used to generate clusters and training sets for support vector machine learning.
View Article and Find Full Text PDFPeptidoglycan is a giant molecule that forms the cell wall that surrounds bacterial cells. It is composed of alternating -acetylglucosamine (NAG) and -acetylmuramic acid (NAM) residues connected by β-(1,4)-glycosidic bonds and cross-linked with short polypeptide chains. Owing to the increasing antibiotic resistance against drugs targeting peptidoglycan synthesis, studies of enzymes involved in the degradation of peptidoglycan, such as -acetylglucos-aminidases, may expose new, valuable drug targets.
View Article and Find Full Text PDFBacterial cell wall proteins play crucial roles in cell survival, growth, and environmental interactions. In Gram-positive bacteria, cell wall proteins include several types that are non-covalently attached via cell wall binding domains. Of the two conserved surface-layer (S-layer)-anchoring modules composed of three tandem SLH or CWB2 domains, the latter have so far eluded structural insight.
View Article and Find Full Text PDFLegumain (AEP) is a lysosomal cysteine protease that was first characterized in leguminous seeds and later discovered in higher eukaryotes. AEP upregulation is linked to a number of diseases including inflammation, arteriosclerosis, and tumorigenesis. Thus this protease is an excellent molecular target for the development of new chemical markers.
View Article and Find Full Text PDFBackground: Pernisine is an extracellular serine protease from the hyperthermophilic Archaeon Aeropyrum pernix K1. Low yields from the natural host and expression problems in heterologous hosts have limited the potential applications of pernisine in industry.
Methodology/ Principal Findings: The challenges of pernisine overexpression in Escherichia coli were overcome by codon preference optimisation and de-novo DNA synthesis.
Acta Crystallogr D Biol Crystallogr
April 2014
At present, the determination of crystal structures from data that have been acquired from twinned crystals is routine; however, with the increasing number of crystal structures additional crystal lattice disorders are being discovered. Here, a previously undescribed partial rotational order-disorder that has been observed in crystals of stefin B is described. The diffraction images revealed normal diffraction patterns that result from a regular crystal lattice.
View Article and Find Full Text PDFMammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the hemoglobin of its host erythrocyte. In this report, we describe the systematic substrate specificity analysis of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids.
View Article and Find Full Text PDFThe contribution of individual cysteine cathepsins as positive mediators of programmed cell death is dependent on several factors, such as the type of stimuli, intensity and duration of the stimulus, and cell type involved. Of the eleven human cysteine cathepsins, cathepsin F is the only cathepsin that exhibits an extended N-terminal proregion, which contains a cystatin-like domain. We predicted that the wild-type human cathepsin F contains three natively disordered regions within the enzyme's propeptide and various amino acid stretches with high fibrillation propensity.
View Article and Find Full Text PDFMajor histocompatibility class (MHC) II molecules are essential for running adaptive immune response. They are produced in the ER and targeted to late endosomes with the help of invariant chain (Ii) trimers. Ii trimerization may be induced by the Ii TM domain.
View Article and Find Full Text PDFMycocypins, clitocypins and macrocypins, are cysteine protease inhibitors isolated from the mushrooms Clitocybe nebularis and Macrolepiota procera. Lack of sequence homology to other families of protease inhibitors suggested that mycocypins inhibit their target cysteine protease by a unique mechanism and that a novel fold may be found. The crystal structures of the complex of clitocypin with the papain-like cysteine protease cathepsin V and of macrocypin and clitocypin alone have revealed yet another motif of binding to papain like-cysteine proteases, which in a yet unrevealed way occludes the catalytic residue.
View Article and Find Full Text PDFCysteine cathepsins play an indispensable role in proteolytic processing of the major histocompatibility complex class II-associated invariant chain (Ii) and foreign antigens in a number of antigen presenting cells. Previously it was shown that a fragment of 64 residues present in the p41 form of the Ii (p41 fragment) selectively inhibits the endopeptidase cathepsin L, whereas the activity of cathepsin S remains unaffected. Comparison of structures indicated that the selectivity of interactions between cysteine cathepsins and the p41 fragment is far from being understood and requires further investigation.
View Article and Find Full Text PDFThyroglobulin type-1 repeats are primarily found in thyroglobulin and several other functionally unrelated proteins. Because a few of them exhibit inhibitory activity against cysteine proteases they were named thyropins (thyroglobulin type-1 domain protease inhibitors). In contrast to cystatins, the best-characterized group of papain-like protease inhibitors, they exhibit greater selectivity in their interactions with target proteases.
View Article and Find Full Text PDFStefin A (Stfa) acts as a competitive inhibitor of intracellular papain-like cysteine proteases which play important roles in normal cellular functions such as general protein turnover, antigen processing and ovarian follicular growth and maturation. In the mouse there are at least three different variants of Stfa (Stfa1, Stfa2 and Stfa3). Recent genetic studies identified structural polymorphisms in Stfa1 and Stfa2 as candidates for Aod1b, a locus controlling susceptibility to day three thymectomy (D3Tx)-induced autoimmune ovarian disease (AOD).
View Article and Find Full Text PDFThe lysosomal metallopeptidase is an enzyme that acts preferentially on dipeptides with unsubstituted N- and C-termini. Its activity is highest in slightly acidic pH. Here we describe the isolation and characterization of lysosomal dipeptidase from human kidney.
View Article and Find Full Text PDF