Canalization and developmental stability (DS) are important organismal properties involved in determining the level of phenotypic variation. Ontogenetic patterns of phenotypic variance components can shed light on the mechanistic basis of developmental buffering (DB). Here, we analyze how individual FA and among-individual variation in head shape change in ontogenetic series of three lizard species raised in laboratory.
View Article and Find Full Text PDFWhen populations experience suboptimal conditions, the mechanisms involved in the regulation of phenotypic variation can be challenged, resulting in increased phenotypic variance. This kind of disturbance can be diagnosed by using morphometric tools to study morphological patterns at different hierarchical levels and evaluate canalization, developmental stability, integration, modularity, and allometry. We assess the effect of urbanization on phenotypic variation in the common wall lizard (Podarcis muralis) by using geometric morphometrics to assess disturbance to head shape development.
View Article and Find Full Text PDF