Publications by authors named "Marko Jusup"

Growing concerns have emerged over the combined effects of multiple stressors on ecosystems. Empirical evidence shows that the sensitivity of aquatic invertebrates to insecticides varies under thermally fluctuating conditions. Additionally, field surveys in estuarine areas of western Japan confirmed the presence of juvenile kuruma prawns (Penaeus japonicus) carrying the white spot syndrome virus (WSSV).

View Article and Find Full Text PDF

Catch-and-effort data are among the primary sources of information for assessing the status of terrestrial wildlife and fish. In fishery science, elaborate stock-assessment models are fitted to such data in order to estimate fish-population sizes and guide management decisions. Given the importance of catch-and-effort data, we scoured a comprehensive dataset pertaining to albacore tuna (Thunnus alalunga) in the north Pacific Ocean for novel ecological information content about this commercially valuable species.

View Article and Find Full Text PDF

The model used by White . () to explore life-history optimization of metabolic scaling has limited ability to capture observed combinations of growth and reproduction, including those of the domestic chicken. The analyses and interpretations may change substantially with realistic parameters.

View Article and Find Full Text PDF

A core challenge in global change biology is to predict how species will respond to future environmental change and to manage these responses. To make such predictions and management actions robust to novel futures, we need to accurately characterize how organisms experience their environments and the biological mechanisms by which they respond. All organisms are thermodynamically connected to their environments through the exchange of heat and water at fine spatial and temporal scales and this exchange can be captured with biophysical models.

View Article and Find Full Text PDF

Patterns in nature are fascinating both aesthetically and scientifically. Alan Turing's celebrated reaction-diffusion model of pattern formation from the 1950s has been extended to an astounding diversity of applications: from cancer medicine, via nanoparticle fabrication, to computer architecture. Recently, several authors have studied pattern formation in underlying networks, but thus far, controlling a reaction-diffusion system in a network to obtain a particular pattern has remained elusive.

View Article and Find Full Text PDF

Physics has a long tradition of laying rigorous quantitative foundations for social phenomena. Here, we up the ante for physics' forays into the territory of social sciences by (i) empirically documenting a tipping point in the relationship between democratic norms and corruption suppression, and then (ii) demonstrating how such a tipping point emerges from a micro-scale mechanistic model of spin dynamics in a complex network. Specifically, the tipping point in the relationship between democratic norms and corruption suppression is such that democratization has little effect on suppressing corruption below a critical threshold, but a large effect above the threshold.

View Article and Find Full Text PDF

β cells are biologically essential for humans and other vertebrates. Because their functionality arises from cell-cell interactions, they are also a model system for collective organization among cells. There are currently two contradictory pictures of this organization: the hub-cell idea pointing at leaders who coordinate the others, and the electrophysiological theory describing all cells as equal.

View Article and Find Full Text PDF

The decision of whether or not to vaccinate is a complex one. It involves the contribution both to a social good-herd immunity-and to one's own well-being. It is informed by social influence, personal experience, education, and mass media.

View Article and Find Full Text PDF

We study the evolutionary dynamics of the Prisoner's Dilemma game in which cooperators and defectors interact with another actor type called exiters. Rather than being exploited by defectors, exiters exit the game in favour of a small pay-off. We find that this simple extension of the game allows cooperation to flourish in well-mixed populations when iterations or reputation are added.

View Article and Find Full Text PDF

What do corruption, resource overexploitation, climate inaction, vaccine hesitancy, traffic congestion, and even cancer metastasis have in common? All these socioeconomic and sociobiological phenomena are known as social dilemmas because they embody in one form or another a fundamental conflict between immediate self-interest and long-term collective interest. A shortcut to the resolution of social dilemmas has thus far been reserved solely for highly stylised cases reducible to dyadic games (e.g.

View Article and Find Full Text PDF

Quantifying sublethal effects of plastics ingestion on marine wildlife is difficult, but key to understanding the ontogeny and population dynamics of affected species. We developed a method that overcomes the difficulties by modelling individual ontogeny under reduced energy intake and expenditure caused by debris ingestion. The predicted ontogeny is combined with a population dynamics model to identify ecological breakpoints: cessation of reproduction or negative population growth.

View Article and Find Full Text PDF

The progression of game theory from classical to evolutionary and spatial games provided a powerful means to study cooperation, and enabled a better understanding of general cooperation-promoting mechanisms. However, current standard models assume that at any given point players must choose either cooperation or defection, meaning that regardless of the spatial structure in which they exist, they cannot differentiate between their neighbours and adjust their behaviour accordingly. This is at odds with interactions among organisms in nature who are well capable of behaving differently towards different members of their communities.

View Article and Find Full Text PDF

Collective risks permeate society, triggering social dilemmas in which working toward a common goal is impeded by selfish interests. One such dilemma is mitigating runaway climate change. To study the social aspects of climate-change mitigation, we organized an experimental game and asked volunteer groups of three different sizes to invest toward a common mitigation goal.

View Article and Find Full Text PDF

Public goods, ranging from judiciary to sanitation to parkland, permeate daily life. They have been a subject of intense interdisciplinary study, with a traditional focus being on participation levels in isolated public goods games (PGGs) as opposed to a more recent focus on participation in PGGs embedded into complex social networks. We merged the two perspectives by arranging voluntary participants into one of three network configurations, upon which volunteers played a number of iterated PGGs within their network neighborhood.

View Article and Find Full Text PDF

We recorded diffraction patterns using a commercially available slit and sensor over a wide range of experimental circumstances, including near- and far-field regimes and oblique incidence at large angles. We then compared the measured patterns with theoretical intensity curves calculated via the numerical integration of formulas derived within the framework of scalar diffraction theory. Experiment and theory show particularly good agreement when the first Rayleigh-Sommerfeld (R-S) formula is used.

View Article and Find Full Text PDF

Residing in the islets of Langerhans in the pancreas, β cells contribute to glucose homeostasis by managing the body's insulin supply. Although it has been acknowledged that healthy β cells engage in heavy cell-to-cell communication to perform their homeostatic function, the exact role and effects of such communication remain partly understood. We offer a novel, to our knowledge, perspective on the subject in the form of 1) a dynamical network model that faithfully mimics fast calcium oscillations in response to above-threshold glucose stimulation and 2) empirical data analysis that reveals a qualitative shift in the cross-correlation structure of measured signals below and above the threshold glucose concentration.

View Article and Find Full Text PDF

Cooperation is the backbone of modern human societies, making it a priority to understand how successful cooperation-sustaining mechanisms operate. Cyclic dominance, a non-transitive set-up comprising at least three strategies wherein the first strategy overrules the second, which overrules the third, which, in turn, overrules the first strategy, is known to maintain biodiversity, drive competition between bacterial strains, and preserve cooperation in social dilemmas. Here, we present a novel route to cyclic dominance in voluntary social dilemmas by adding to the traditional mix of cooperators, defectors and loners, a fourth player type, risk-averse hedgers, who enact tit-for-tat upon paying a hedging cost to avoid being exploited.

View Article and Find Full Text PDF

Social dilemmas are situations wherein individuals choose between selfish interest and common good. One example of this is the vaccination dilemma, in which an individual who vaccinates at a cost protects not only himself but also others by helping maintain a common good called herd immunity. There is, however, a strong incentive to forgo vaccination, thus avoiding the associated cost, all the while enjoying the protection of herd immunity.

View Article and Find Full Text PDF

We look at a recent expansion of Physarum research from inspiring biomimetic algorithms to serving as a model organism in the evolutionary study of perception, memory, learning, and decision making.

View Article and Find Full Text PDF

Species conservation and fisheries management require approaches that relate environmental conditions to population-level dynamics, especially because environmental conditions shift due to climate change. We combined an individual-level physiological model and a conceptually simple matrix population model to develop a novel tool that relates environmental change to population dynamics, and used this tool to analyze effects of environmental changes and early-life stochasticity on Pacific bluefin tuna (PBT) population growth. We found that (i) currently, PBT population experiences a positive growth rate, (ii) somewhat surprisingly, stochasticity in early life survival increases this growth rate, (iii) sexual maturation age strongly depends on food and temperature, (iv) current fishing pressure, though high, is tolerable as long as the environment is such that PBT mature in less than 9 years of age (maturation age of up to 10 is possible in some environments), (v) PBT population growth rate is much more susceptible to changes in juvenile survival than changes in total reproductive output or adult survival.

View Article and Find Full Text PDF

We combined the elements of evolutionary game theory and mathematical epidemiology to comprehensively evaluate the performance of vaccination-subsidizing policies in the face of a seasonal epidemic. We conducted multi-agent simulations to, among others, find out how the topology of the underlying social networks affects the results. We also devised a mean-field approximation to confirm the simulation results and to better understand the influences of an imperfect vaccine.

View Article and Find Full Text PDF

The decoy effect is a cognitive bias documented in behavioural economics by which the presence of a third, (partly) inferior choice causes a significant shift in people's preference for other items. Here, we performed an experiment with human volunteers who played a variant of the repeated prisoner's dilemma game in which the standard options of "cooperate" and "defect" are supplemented with a new, decoy option, "reward". We show that although volunteers rarely chose the decoy option, its availability sparks a significant increase in overall cooperativeness and improves the likelihood of success for cooperative individuals in this game.

View Article and Find Full Text PDF

Physarum polycephalum, a single-celled, multinucleate slime mould, is a seemingly simple organism, yet it exhibits quasi-intelligent behaviour during extension, foraging, and as it adapts to dynamic environments. For these reasons, Physarum is an attractive target for modelling with the underlying goal to uncover the physiological mechanisms behind the exhibited quasi-intelligence and/or to devise novel algorithms for solving complex computational problems. The recent increase in modelling studies on Physarum has prompted us to review the latest developments in this field in the context of modelling and computing alike.

View Article and Find Full Text PDF

Network reciprocity has been widely advertised in theoretical studies as one of the basic cooperation-promoting mechanisms, but experimental evidence favoring this type of reciprocity was published only recently. When organized in an unchanging network of social contacts, human subjects cooperate provided the following strict condition is satisfied: The benefit of cooperation must outweigh the total cost of cooperating with all neighbors. In an attempt to relax this condition, we perform social dilemma experiments wherein network reciprocity is aided with another theoretically hypothesized cooperation-promoting mechanism-costly punishment.

View Article and Find Full Text PDF

Scientists strive to understand how functionalities, such as conservation laws, emerge in complex systems. Living complex systems in particular create high-ordered functionalities by pairing up low-ordered complementary processes, e.g.

View Article and Find Full Text PDF