The binding of four phenanthridine-guanidine peptides to DNA/RNA was evaluated via spectrophotometric/microcalorimetric methods and computations. The minor structural modifications-the type of the guanidine group (pyrrole guanidine (GCP) and arginine) and the linker length (presence or absence of glycine)-greatly affected the conformation of compounds and consequently the binding to double- (ds-) and single-stranded (ss-) polynucleotides. GCP peptide with shorter linker was able to distinguish between RNA (A-helix) and DNA (B-helix) by different circular dichroism response at 295 nm and thus can be used as a chiral probe.
View Article and Find Full Text PDFThree novel spiroketals were prepared by a one-pot transformation of 6-O-methyl-9(E)-hydroxyiminoerythronolide A. We present the formation of a [4.5]spiroketal moiety within the macrolide lactone ring, but also the unexpected formation of a 10-C=11-C double bond and spontaneous change of stereochemistry at position 8-C.
View Article and Find Full Text PDFSeries of novel peptide-bridged phenanthridine-nucleobase conjugates were prepared by solid phase peptide synthesis, which allowed easy and fast tuning of structure properties. Compounds were fully characterized in aqueous medium, pointing out to intramolecularly stacked structures. The stacked phenanthridine-thymine-phenanthridine system revealed characteristic excimeric fluorescence band and very specific CD spectrum.
View Article and Find Full Text PDFMacrolides with 14- and 15-membered ring are characterized by high and extensive tissue distribution, as well as good cellular accumulation and retention. Since macrolide structures do not fit the Lipinski rule of five, macrolide pharmacokinetic properties cannot be successfully predicted by common models based on data for small molecules. Here we describe the development of the first models for macrolide cellular pharmacokinetics.
View Article and Find Full Text PDFSeries of novel peptide-bridged bis-phenanthridine derivatives as well as corresponding monomers were prepared by solid phase peptide synthesis, which allowed easy and fast tuning of compound properties. Interactions of new derivatives with double stranded DNA were strongly structure-dependent, among which the most interesting is bis-phenanthridine derivative forming intramolecular excimer, with specific fluorescence band sensitive to the pH as well as on the interactions with ds-DNA. Moreover, at variance to commonly high cytotoxic effects of phenanthridine derivatives, here studied monomeric as well as bis-phenanthridine derivatives exhibited negligible antiproliferative activity on a panel of human cell lines, which makes them promising lead compounds for development of new spectrophotometric markers.
View Article and Find Full Text PDF