Publications by authors named "Marko Boehm"

Article Synopsis
  • The oxidative pentose phosphate (OPP) pathway is crucial for generating metabolites and reducing power in cells, with its initial reactions supporting the Calvin-Benson cycle.
  • Glucose-6-phosphate dehydrogenase (G6PDH) is the key enzyme in this pathway, regulated by the redox protein OpcA in cyanobacteria, showing different activity based on OpcA's oxidation state.
  • Research using cryogenic electron microscopy revealed that OpcA interacts with G6PDH, causing structural changes that fine-tune G6PDH activity depending on the amount of OpcA bound, highlighting a sophisticated regulatory mechanism in the OPP pathway.
View Article and Find Full Text PDF

The NAD-reducing soluble [NiFe] hydrogenase (SH) is the key enzyme for production and consumption of molecular hydrogen (H) in Synechocystis sp. PCC6803. In this study, we focused on the reductase module of the SynSH and investigated the structural and functional aspects of its subunits, particularly the so far elusive role of HoxE.

View Article and Find Full Text PDF

Electron carrier proteins (ECPs), binding iron-sulfur clusters, are vital components within the intricate network of metabolic and photosynthetic reactions. They play a crucial role in the distribution of reducing equivalents. In Synechocystis sp.

View Article and Find Full Text PDF

Aims: A meaningful sonographic examination is decisively dependent on the B-scan quality of the ultrasound device. When selecting a suitable ultrasound device, B-scan quality should be an important purchase criterion. Although there is no generally accepted method to measure B-scan quality, we tried to evaluate comparable sonography devices from different manufacturers regarding B-scan quality.

View Article and Find Full Text PDF

The cyanobacterium sp.PCC 6803 possesses a bidirectional NiFe-hydrogenase, HoxEFUYH. It functions to produce hydrogen under dark, fermentative conditions and photoproduces hydrogen when dark-adapted cells are illuminated.

View Article and Find Full Text PDF

The vision to replace coal with hydrogen goes back to Jules Verne in 1874. However, sustainable hydrogen production remains challenging. The most elegant approach is to utilize photosynthesis for water splitting and to subsequently save solar energy as hydrogen.

View Article and Find Full Text PDF

The decarboxylation of pyruvate is a central reaction in the carbon metabolism of all organisms. It is catalyzed by the pyruvate:ferredoxin oxidoreductase (PFOR) and the pyruvate dehydrogenase (PDH) complex. Whereas PFOR reduces ferredoxin, the PDH complex utilizes NAD.

View Article and Find Full Text PDF

Cyanobacterial Hox is a [NiFe] hydrogenase that consists of the hydrogen (H)-activating subunits HoxYH, which form a complex with the HoxEFU assembly to mediate reactions with soluble electron carriers like NAD(P)H and ferredoxin (Fdx), thereby coupling photosynthetic electron transfer to energy-transforming catalytic reactions. Researchers studying the HoxEFUYH complex have observed that HoxEFU can be isolated independently of HoxYH, leading to the hypothesis that HoxEFU is a distinct functional subcomplex rather than an artifact of Hox complex isolation. Moreover, outstanding questions about the reactivity of Hox with natural substrates and the site(s) of substrate interactions and coupling of H, NAD(P)H, and Fdx remain to be resolved.

View Article and Find Full Text PDF

The last few years have seen an ever-increasing interest in the exploitation of microalgae as an alternative platform to produce high-value products such as biofuels, industrial enzymes, therapeutic proteins, including antibodies, hormones, and vaccines. Due to some unique attractive features, engineering of the chloroplast genome provides a promising platform for the production of high-value targets because it allows manipulation of metabolic processes in ways that would be impossible, or at least prohibitively difficult through traditional approaches. Since its initial demonstration in 1988 in Chlamydomonas reinhardtii, genetic tools have been developed, which have made it possible to produce high-value molecules in different species.

View Article and Find Full Text PDF
Article Synopsis
  • Ferredoxin5 (FDX5) plays a crucial role in the dark and during sulfur (S) deprivation in green algae, helping maintain the integrity of thylakoid membranes.
  • When FDX5 is absent, the algae experience delays in reaching anoxic conditions and show reduced photosynthetic activity, acetate uptake, and hydrogen production.
  • In response to the lack of FDX5, other ferredoxins (FDX1 and FDX2) increase to compensate, indicating that FDX5 influences metabolic processes through interactions with various redox partners.
View Article and Find Full Text PDF

Photosynthetic microorganisms typically have multiple isoforms of the electron transfer protein ferredoxin, although we know little about their exact functions. Surprisingly, a Chlamydomonas reinhardtii mutant null for the ferredoxin-5 gene (FDX5) completely ceased growth in the dark, with both photosynthetic and respiratory functions severely compromised; growth in the light was unaffected. Thylakoid membranes in dark-maintained fdx5 mutant cells became severely disorganized concomitant with a marked decrease in the ratio of monogalactosyldiacylglycerol to digalactosyldiacylglycerol, major lipids in photosynthetic membranes, and the accumulation of triacylglycerol.

View Article and Find Full Text PDF

Under anoxic conditions the green alga Chlamydomonas reinhardtii activates various fermentation pathways leading to the creation of formate, acetate, ethanol and small amounts of other metabolites including d-lactate and hydrogen. Progress has been made in identifying the enzymes involved in these pathways and their subcellular locations; however, the identity of the enzyme involved in reducing pyruvate to d-lactate has remained unclear. Based on sequence comparisons, enzyme activity measurements, X-ray crystallography, biochemical fractionation and analysis of knock-down mutants, we conclude that pyruvate reduction in the chloroplast is catalyzed by a tetrameric NAD(+)-dependent d-lactate dehydrogenase encoded by Cre07.

View Article and Find Full Text PDF

The green alga Chlamydomonas reinhardtii contains six plastidic [2Fe2S]-cluster ferredoxins (FDXs), with FDX1 as the predominant isoform under photoautotrophic growth. FDX2 is highly similar to FDX1 and has been shown to interact with specific enzymes (such as nitrite reductase), as well as to share interactors with FDX1, such as the hydrogenases (HYDA), ferredoxin:NAD(P) reductase I (FNR1), and pyruvate:ferredoxin oxidoreductase (PFR1), albeit performing at low catalytic rates. Here we report the FDX2 crystal structure solved at 1.

View Article and Find Full Text PDF

Cyanobacteria contain a bidirectional [NiFe] hydrogenase which transiently produces hydrogen upon exposure of anoxic cells to light, potentially acting as a "valve" releasing excess electrons from the electron transport chain. However, its interaction with the photosynthetic electron transport chain remains unclear. By GFP-tagging the HoxF diaphorase subunit we show that the hydrogenase is thylakoid associated, comprising a population dispersed uniformly through the thylakoids and a subpopulation localized to discrete puncta in the distal thylakoid.

View Article and Find Full Text PDF

The cyanobacterium Synechocystis sp. PCC 6803 expresses four different FtsH protease subunits (FtsH1-4) that assemble into specific homo- and heterocomplexes. The FtsH2/FtsH3 complex is involved in photoprotection but the physiological roles of the other complexes, notably the essential FtsH1/FtsH3 complex, remain unclear.

View Article and Find Full Text PDF

The PsbQ-like protein, termed CyanoQ, found in the cyanobacterium Synechocystis sp. PCC 6803 is thought to bind to the lumenal surface of photosystem II (PSII), helping to shield the Mn4CaO5 oxygen-evolving cluster. CyanoQ is, however, absent from the crystal structures of PSII isolated from thermophilic cyanobacteria raising the possibility that the association of CyanoQ with PSII might not be a conserved feature.

View Article and Find Full Text PDF

Ferredoxins (FDXs) can distribute electrons originating from photosynthetic water oxidation, fermentation, and other reductant-generating pathways to specific redox enzymes in different organisms. The six FDXs identified in Chlamydomonas reinhardtii are not fully characterized in terms of their biological function. In this report, we present data from the following: (a) yeast two-hybrid screens, identifying interaction partners for each Chlamydomonas FDX; (b) pairwise yeast two-hybrid assays measuring FDX interactions with proteins from selected biochemical pathways; (c) affinity pulldown assays that, in some cases, confirm and even expand the interaction network for FDX1 and FDX2; and (d) in vitro NADP(+) reduction and H2 photo-production assays mediated by each FDX that verify their role in these two pathways.

View Article and Find Full Text PDF

Hydrogenases are metalloenzymes that catalyze 2H(+) + 2e(-) ↔ H(2). A multisubunit, bidirectional [NiFe]-hydrogenase has been identified and characterized in a number of bacteria, including cyanobacteria, where it is hypothesized to function as an electron valve, balancing reductant in the cell. In cyanobacteria, this Hox hydrogenase consists of five proteins in two functional moieties: a hydrogenase moiety (HoxYH) with homology to heterodimeric [NiFe]-hydrogenases and a diaphorase moiety (HoxEFU) with homology to NuoEFG of respiratory Complex I, linking NAD(P)H ↔ NAD(P)(+) as a source/sink for electrons.

View Article and Find Full Text PDF

FtsH metalloproteases are key components of the photosystem II (PSII) repair cycle, which operates to maintain photosynthetic activity in the light. Despite their physiological importance, the structure and subunit composition of thylakoid FtsH complexes remain uncertain. Mutagenesis has previously revealed that the four FtsH homologs encoded by the cyanobacterium Synechocystis sp PCC 6803 are functionally different: FtsH1 and FtsH3 are required for cell viability, whereas FtsH2 and FtsH4 are dispensable.

View Article and Find Full Text PDF

We have developed complexes of CdS nanorods capped with 3-mercaptopropionic acid (MPA) and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) that photocatalyze reduction of H(+) to H(2) at a CaI turnover frequency of 380-900 s(-1) and photon conversion efficiencies of up to 20% under illumination at 405 nm. In this paper, we focus on the compositional and mechanistic aspects of CdS:CaI complexes that control the photochemical conversion of solar energy into H(2). Self-assembly of CdS with CaI was driven by electrostatics, demonstrated as the inhibition of ferredoxin-mediated H(2) evolution by CaI.

View Article and Find Full Text PDF

The biogenesis and oxygen-evolving activity of cyanobacterial Photosystem II (PSII) is dependent on a number of accessory proteins not found in the crystallised dimeric complex. These include Psb27, a small lipoprotein attached to the lumenal side of PSII, which has been assigned a role in regulating the assembly of the Mn(4)Ca cluster catalysing water oxidation. To gain a better understanding of Psb27, we have determined in this study the crystal structure of the soluble domain of Psb27 from Thermosynechococcus elongatus to a resolution of 1.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on the Psb27 protein's location and function in photosystem II (PSII) biogenesis within the cyanobacterium Synechocystis sp. PCC 6803.
  • Psb27 is mainly found in PSII core complexes but also associates with unassembled CP43 complexes and larger PSII structures, suggesting a role in their assembly.
  • Deletion of the psb27 gene did not severely disrupt PSII assembly but impaired the organism's ability to acclimate to high light, hinting at a potential interaction between PSII and PSI in the assembly and repair processes.
View Article and Find Full Text PDF

Biochemical characterization of intermediates involved in the assembly of the oxygen-evolving Photosystem II (PSII) complex is hampered by their low abundance in the membrane. Using the cyanobacterium Synechocystis sp. PCC 6803, we describe here the isolation of the CP47 and CP43 subunits, which, during biogenesis, attach to a reaction center assembly complex containing D1, D2, and cytochrome b(559), with CP47 binding first.

View Article and Find Full Text PDF

We present here the crystal structure of CyanoP (Tlr2075) from Thermosynechococcus elongatus at 2.8 A. CyanoP is a substoichiometric component of the isolated cyanobacterial Photosystem II (PSII) complex, distantly related to the PsbP extrinsic subunit of the oxygen-evolving PSII complex in higher plants and green algae.

View Article and Find Full Text PDF