Publications by authors named "Markku S Kulomaa"

Chicken avidin (Avd) and streptavidin from Streptomyces avidinii are extensively used in bionanotechnology due to their extremely tight binding to biotin (Kd ~ 10-15 M for chicken Avd). We previously reported engineered Avds known as antidins, which have micro- to nanomolar affinities for steroids, non-natural ligands of Avd. Here, we report the 2.

View Article and Find Full Text PDF

Bradavidin is a tetrameric biotin-binding protein similar to chicken avidin and bacterial streptavidin, and was originally cloned from the nitrogen-fixing bacteria Bradyrhizobium diazoefficiens. We have previously reported the crystal structure of the full-length, wild-type (wt) bradavidin with 138 amino acids, where the C-terminal residues Gly129-Lys138 ("Brad-tag") act as an intrinsic ligand (i.e.

View Article and Find Full Text PDF

Proteins with high specificity, affinity, and stability are needed for biomolecular recognition in a plethora of applications. Antibodies are powerful affinity tools, but they may also suffer from limitations such as low stability and high production costs. Avidin and streptavidin provide a promising scaffold for protein engineering, and due to their ultratight binding to D-biotin they are widely used in various biotechnological and biomedical applications.

View Article and Find Full Text PDF

In addition to vaccines, noninfectious virus-like particles (VLPs) that mimic the viral capsid show an attractive possibility of presenting immunogenic epitopes or targeting molecules on their surface. Here, functionalization of norovirus-derived VLPs by simple non-covalent conjugation of various molecules is shown. By using the affinity between a surface-exposed polyhistidine-tag and multivalent tris-nitrilotriacetic acid (trisNTA), fluorescent dye molecules and streptavidin-biotin conjugated to trisNTA are displayed on the VLPs to demonstrate the use of these VLPs as easily modifiable nanocarriers as well as a versatile vaccine platform.

View Article and Find Full Text PDF
Article Synopsis
  • Developed a more efficient method for subcloning DNA-shuffled libraries using recombination cloning (Gateway) without extra purification steps.
  • The new procedure simplifies traditional DNA shuffling protocols and maintains high library quality.
  • This method reduces the time needed to construct diverse DNA libraries, making it generally applicable for gene library creation.
View Article and Find Full Text PDF

Switchavidin is a chicken avidin mutant displaying reversible binding to biotin, an improved binding affinity toward conjugated biotin, and low nonspecific binding due to reduced surface charge. These properties make switchavidin an optimal tool in biosensor applications for the reversible immobilization of biotinylated proteins on biotinylated sensor surfaces. Furthermore, switchavidin opens novel possibilities for patterning, purification, and labeling.

View Article and Find Full Text PDF

Chimeric avidin (ChiAVD) is a product of rational protein engineering remarkably resistant to heat and harsh conditions. In quest of the fundamentals behind factors affecting stability we have elucidated the solution NMR spectroscopic structure of the biotin-bound form of ChiAVD and characterized the protein dynamics through 15N relaxation and hydrogen/deuterium (H/D) exchange of this and the biotin-free form. To surmount the challenges arising from the very large size of the protein for NMR spectroscopy, we took advantage of its high thermostability.

View Article and Find Full Text PDF

Control over the functionality of interfaces through biomolecular engineering is a central tool for nanoscale technology as well as many current applications of biology. In this work we designed fusion proteins that combined the surface adhesion and interfacial activity of a hydrophobin-protein together with the high affinity biotin-binding capability of an avidin-protein. We found that an overall architecture that was based on a circularly permuted version of avidin, dual-chain avidin, and hydrophobin gave a highly functional combination.

View Article and Find Full Text PDF

Avidins are a family of proteins widely employed in biotechnology. We have previously shown that functional chimeric mutant proteins can be created from avidin and avidin-related protein 2 using a methodology combining random mutagenesis by recombination and selection by a tailored biopanning protocol (phage display). Here, we report the crystal structure of one of the previously selected and characterized chimeric avidin forms, A/A2-1.

View Article and Find Full Text PDF

Coxsackievirus B3 (CVB3) is an important cause of acute and chronic viral myocarditis, and dilated cardiomyopathy (DCM). Although vaccination against CVB3 could significantly reduce the incidence of serious or fatal viral myocarditis and various other diseases associated with CVB3 infection, there is currently no vaccine or therapeutic reagent in clinical use. In this study, we contributed towards the development of a CVB3 vaccine by establishing an efficient and scalable ion exchange chromatography-based purification method for CVB3 virus and baculovirus-insect cell-expressed CVB3 virus-like particles (VLPs).

View Article and Find Full Text PDF

The avidin protein family members are well known for their high affinity towards D-biotin and high structural stability. These properties make avidins valuable tools for a wide range of biotechnology applications. We have identified a new member of the avidin family in the zebrafish (Danio rerio) genome, hereafter called zebavidin.

View Article and Find Full Text PDF

Bradavidin II is a biotin-binding protein from Bradyrhizobium japonicum that resembles chicken avidin and bacterial streptavidin. A biophysical characterization was carried out using dynamic light scattering, native mass spectrometry, differential scanning calorimetry, and isothermal titration calorimetry combined with structural characterization using X-ray crystallography. These observations revealed that bradavidin II differs from canonical homotetrameric avidin protein family members in its quaternary structure.

View Article and Find Full Text PDF

Bradavidin is a homotetrameric biotin-binding protein from Bradyrhizobium japonicum, a nitrogen fixing and root nodule-forming symbiotic bacterium of the soybean. Wild-type (wt) bradavidin has 138 amino acid residues, whereas the C-terminally truncated core-bradavidin has only 118 residues. We have solved the X-ray structure of wt bradavidin and found that the C-terminal amino acids of each subunit were uniquely bound to the biotin-binding pocket of an adjacent subunit.

View Article and Find Full Text PDF

Avidin is a homotetrameric ~56 kDa protein found in chicken egg white. Avidin's ability to bind biotin with a very high affinity has widely been exploited in biotechnological applications. Protein engineering has further diversified avidin's feasibility.

View Article and Find Full Text PDF

Recombinant expression of the norovirus capsid protein VP1 leads to self-assembly of non-infectious virus-like particles (VLPs), which are recognized as promising vaccine candidates against norovirus infections. To overcome the scalability issues connected to the ultracentrifugation-based purification strategies used in previous studies, an anion exchange-based purification method for norovirus VLPs was developed in this study. The method consists of precipitation by polyethylene glycol (PEG) and a single anion exchange chromatography step for purifying baculovirus-expressed GII.

View Article and Find Full Text PDF

Avidins represent an interesting group of proteins showing high structural similarity and ligand-binding properties but low similarity in primary structure. In this study, we show that it is possible to create functional chimeric proteins from the avidin protein family when applying DNA family shuffling to the genes of the avidin protein family: avidin, avidin related gene 2 and biotin-binding protein A. The novel chimeric proteins were selected by phage display biopanning against biotin, and the selected enriched proteins were characterized, displaying diverse features distinct from the parental genes, including binding to cysteine.

View Article and Find Full Text PDF

A bio-ink for covalent deposition of thermostable, high affinity biotin-binding chimeric avidin onto sol-gel substrates was developed. The bio-ink was prepared from heterobifunctional crosslinker 6-maleimidohexanoic acid N-hydroxysuccinimide which was first reacted either with 3-aminopropyltriethoxysilane or 3-aminopropyldimethylethoxysilane to form silane linkers 6-maleimide-N-(3-(triethoxysilyl)propyl)hexanamide or -(ethoxydimethylsilyl)propyl)-hexanamide. C-terminal cysteine genetically engineered to chimeric avidin was reacted with the maleimide group of silane linker in methanol/PBS solution to form a suspension, which was printed on sol-gel modified PMMA film.

View Article and Find Full Text PDF

Background: Engineered proteins, with non-immunoglobulin scaffolds, have become an important alternative to antibodies in many biotechnical and therapeutic applications. When compared to antibodies, tailored proteins may provide advantageous properties such as a smaller size or a more stable structure.

Results: Avidin is a widely used protein in biomedicine and biotechnology.

View Article and Find Full Text PDF

Background: Avidin is a chicken egg-white protein with high affinity to vitamin H, also known as D-biotin. Many applications in life science research are based on this strong interaction. Avidin is a homotetrameric protein, which promotes its modification to symmetrical entities.

View Article and Find Full Text PDF

A stable, bioactive cellulose acetate (CA) surface was developed by functionalizing the surface with highly thermostable avidin form. The CA films were first functionalized with a mixture of 3-aminopropyltrimethoxysilane and tetraethoxysilane to introduce free amino groups onto the surface of CA films. Free amino groups were functionalized with glutaraldehyde to obtain an activated surface for covalent biomolecule immobilization.

View Article and Find Full Text PDF

Noroviruses are an important cause of epidemic acute gastroenteritis in humans. In this study the production and characterization of GII.4 norovirus virus-like particles (VLPs) in insect cells is reported.

View Article and Find Full Text PDF

The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (strept)avidin to improve the existing applications. Even so, (strept)avidin greatly favours its natural ligand, biotin.

View Article and Find Full Text PDF

Avidin and its bacterial analog streptavidin have been widely used in applications in life sciences. Recently, we described a highly thermostable engineered avidin, called chimeric avidin, which is a hybrid of avidin and avidin-related protein 4. Here, we report a protocol for pilot-scale production in E.

View Article and Find Full Text PDF

Background: Avidins are proteins with extraordinarily high ligand-binding affinity, a property which is used in a wide array of life science applications. Even though useful for biotechnology and nanotechnology, the biological function of avidins is not fully understood. Here we structurally and functionally characterise a novel avidin named xenavidin, which is to our knowledge the first reported avidin from a frog.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionoilmga28ktfheduhl5i2sbl9993l8fni): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once