Publications by authors named "Markiyan Samborskyy"

The rapid development of new molecular methods and approaches, sequencing technologies, has provided new insights into genetic and structural features of bacterial genomes. Information about the genetic organization of metabolic pathways and their regulatory elements has greatly contributed to the increase in the number of studies related to the construction of new bacterial strains with improved characteristics. In this study, the entire genome of the producing strain Clostridium sp.

View Article and Find Full Text PDF

Adenylate-forming enzymes (AFEs) are a mechanistic superfamily of proteins that are involved in many cellular roles. In the biosynthesis of benzoxazole antibiotics, an AFE has been reported to play a key role in the condensation of cyclic molecules. In the biosynthetic gene cluster for the benzoxazole AJI9561, AjiA1 catalyzes the condensation of two 3-hydroxyanthranilic acid (3-HAA) molecules using ATP as a co-substrate.

View Article and Find Full Text PDF

The type I polyketide SF2487/A80577 (herein referred to as tetromadurin) is a polyether tetronate ionophore antibiotic produced by the terrestrial Gram-positive bacterium Actinomadura verrucosospora. Tetromadurin is closely related to the polyether tetronates tetronasin (M139603) and tetronomycin, all of which are characterised by containing a tetronate, cyclohexane, tetrahydropyran, and at least one tetrahydrofuran ring. We have sequenced the genome of Actinomadura verrucosospora to identify the biosynthetic gene cluster responsible for tetromadurin biosynthesis (the mad gene cluster).

View Article and Find Full Text PDF

Enzymes catalysing remarkable Diels-Alder-like [4+2] cyclisations have been previously implicated in the biosynthesis of spirotetronate and spirotetramate antibiotics. Biosynthesis of the polyether antibiotic tetronasin is not anticipated to require such steps, yet the tetronasin gene cluster encodes enzymes Tsn11 and Tsn15, homologous to authentic [4+2] cyclases. Here we show that deletion of Tsn11 led to accumulation of a late-stage intermediate, in which the two central rings of tetronasin, and four of its 12 asymmetric centres, remain unformed.

View Article and Find Full Text PDF

Whole genome analysis of sp. KO-7888 has revealed various pathway-specific transcriptional regulatory genes associated with silent biosynthetic gene clusters. A antibiotic regulatory protein gene, , located adjacent to a novel nonribosomal peptide synthetase (NRPS) gene cluster, was overexpressed in the wild-type strain.

View Article and Find Full Text PDF

Ossamycin from Streptomyces hygroscopicus var. ossamyceticus is an antifungal and cytotoxic polyketide and a potent inhibitor of the mitochondrial ATPase. Analysis of a near-complete genome sequence of the ossamycin producer has allowed the identification of the 127-kbp ossamycin biosynthetic gene cluster.

View Article and Find Full Text PDF

Malayamycin A is an unusual bicyclic C-nucleoside, with interesting antiviral, antifungal, and anticancer bioactivity. We report here the discovery and characterization of the biosynthetic pathway to malayamycin by using genome mining of near-identical clusters both from the known producer Streptomyces malaysiensis and from Streptomyces chromofuscus. The key precursor 5'-pseudouridine monophosphate (5'-Ψ-MP) is supplied chiefly through the action of MalD, a TruD-like pseudouridine synthase.

View Article and Find Full Text PDF

Penicillium brasilianum (strain LaBioMMi 136) has been reported to be a great producer of secondary metabolites and a source of enzymes of biotechnological interest. Here, we report the draft genome sequence of P. brasilianum (strain LaBioMMi 136), isolated as an endophyte from the plant Melia azedarach (family Meliaceae).

View Article and Find Full Text PDF

Clethramycin from DSM4137, and mediomycins (produced together with clethramycin from ), are near-identical giant linear polyenes apparently constructed from, respectively, a 4-guanidinobutanoate or 4-aminobutanoate starter unit and 27 polyketide extender units, and bearing a specific -sulfonate modification at the C-29 hydroxy group. We show here that mediomycins are actually biosynthesised not by use of a different starter unit but by direct late-stage deamidination of (desulfo)clethramycin. A gene () encoding a candidate sulfotransferase has been located in both gene clusters.

View Article and Find Full Text PDF

Erythromycin, avermectin and rapamycin are clinically useful polyketide natural products produced on modular polyketide synthase multienzymes by an assembly-line process in which each module of enzymes in turn specifies attachment of a particular chemical unit. Although polyketide synthase encoding genes have been successfully engineered to produce novel analogues, the process can be relatively slow, inefficient, and frequently low-yielding. We now describe a method for rapidly recombining polyketide synthase gene clusters to replace, add or remove modules that, with high frequency, generates diverse and highly productive assembly lines.

View Article and Find Full Text PDF

Genome sequencing of Streptomyces malaysiensis DSM 4137 revealed the presence of four terpene cyclase genes, one of which was characterised as (+)-isoafricanol synthase. Its cyclisation mechanism was extensively studied using isotopically labelled precursors. Several enzymes with high homology that likely also function as (+)-isoafricanol synthases are encoded in a number of other genome sequenced streptomycetes.

View Article and Find Full Text PDF

The assembly-line synthases that produce bacterial polyketide natural products follow a modular paradigm in which each round of chain extension is catalysed by a different set or module of enzymes. Examples of deviation from this paradigm, in which a module catalyses either multiple extensions or none are of interest from both a mechanistic and an evolutionary viewpoint. We present evidence that in the biosynthesis of the 36-membered macrocyclic aminopolyol lactones (marginolactones) azalomycin and kanchanamycin, isolated respectively from DSM4137 and Tü4018, the first extension module catalyses both the first and second cycles of polyketide chain extension.

View Article and Find Full Text PDF

The α,β-epoxyketone proteasome inhibitor TMC-86A was discovered as a previously unreported metabolite of Streptomyces chromofuscus ATCC49982, and the gene cluster responsible for its biosynthesis was identified via genome sequencing. Incorporation experiments with [(13)C-methyl]l-methionine implicated an α-dimethyl-β-keto acid intermediate in the biosynthesis of TMC-86A. Incubation of the chemically synthesized α-dimethyl-β-keto acid with a purified recombinant flavin-dependent enzyme that is conserved in all known pathways for epoxyketone biosynthesis resulted in formation of the corresponding α-methyl-α,β-epoxyketone.

View Article and Find Full Text PDF

Desertomycin A is an aminopolyol polyketide containing a macrolactone ring. We have proposed that desertomycin A and similar compounds (marginolactones) are formed by polyketide synthases primed not with γ-aminobutanoyl-CoA but with 4-guanidinylbutanoyl-CoA, to avoid facile cyclization of the starter unit. This hypothesis requires that there be a final-stage de-amidination of the corresponding guanidino-substituted natural product, but no enzyme for such a process has been described.

View Article and Find Full Text PDF

Conglobatin is an unusual C2-symmetrical macrodiolide from the bacterium Streptomyces conglobatus with promising antitumor activity. Insights into the genes and enzymes that govern both the assembly-line production of the conglobatin polyketide and its dimerization are essential to allow rational alterations to be made to the conglobatin structure. We have used a rapid, direct in vitro cloning method to obtain the entire cluster on a 41-kbp fragment, encoding a modular polyketide synthase assembly line.

View Article and Find Full Text PDF

Actinomycete integrative and conjugative elements (AICEs) are present in diverse genera of the actinomycetes, the most important bacterial producers of bioactive secondary metabolites. Comparison of pMEA100 of Amycolatopsis mediterranei, pMEA300 of Amycolatopsis methanolica and pSE211 of Saccharopolyspora erythraea, and other AICEs, revealed a highly conserved structural organisation, consisting of four functional modules (replication, excision/integration, regulation, and conjugative transfer). Features conserved in all elements, or specific for a single element, are discussed and analysed.

View Article and Find Full Text PDF

Saccharopolyspora erythraea is used for the industrial-scale production of the antibiotic erythromycin A, derivatives of which play a vital role in medicine. The sequenced chromosome of this soil bacterium comprises 8,212,805 base pairs, predicted to encode 7,264 genes. It is circular, like those of the pathogenic actinomycetes Mycobacterium tuberculosis and Corynebacterium diphtheriae, but unlike the linear chromosomes of the model actinomycete Streptomyces coelicolor A3(2) and the closely related Streptomyces avermitilis.

View Article and Find Full Text PDF

Meridamycin is a non-immunosuppressant, FKBP-binding macrocyclic polyketide, which has major potential as a neuroprotectant in a range of neurodegenerative disorders including dementia, Parkinson's disease and ischaemic stroke. A biosynthetic cluster predicted to encode biosynthesis of meridamycin was cloned from the prolific secondary-metabolite-producing strain Streptomyces sp. DSM 4137, not previously known to produce this compound, and specific gene deletion was used to confirm the role of this cluster in the biosynthesis of meridamycin.

View Article and Find Full Text PDF