Publications by authors named "Markiewicz P"

Introduction: To support clinical trial designs focused on early interventions, our study determined reliable early amyloid-β (Aβ) accumulation based on Centiloids (CL) in pre-dementia populations.

Methods: A total of 1032 participants from the Amyloid Imaging to Prevent Alzheimer's Disease-Prognostic and Natural History Study (AMYPAD-PNHS) and Insight46 who underwent [F]flutemetamol, [F]florbetaben or [F]florbetapir amyloid-PET were included. A normative strategy was used to define reliable accumulation by estimating the 95 percentile of longitudinal measurements in sub-populations (N = 101/750, N = 35/382) expected to remain stable over time.

View Article and Find Full Text PDF

Purpose: Positron emission tomography (PET) provides in vivo quantification of amyloid-β (Aβ) pathology. Established methods for assessing Aβ burden can be affected by physiological and technical factors. Novel, data-driven metrics have been developed to account for these sources of variability.

View Article and Find Full Text PDF

Deposition of amyloid and tau pathology can be quantified in vivo using positron emission tomography (PET). Accurate longitudinal measurements of accumulation from these images are critical for characterizing the start and spread of the disease. However, these measurements are challenging; precision and accuracy can be affected substantially by various sources of errors and variability.

View Article and Find Full Text PDF
Article Synopsis
  • Cortical tau buildup is a critical factor in the onset and progression of Alzheimer's disease (AD), linked to cognitive decline.
  • This study analyzed data from 59 participants in autosomal dominant AD studies, using tau PET scans to track changes among symptomatic and presymptomatic individuals.
  • Results indicated that symptomatic carriers had notably higher tau levels than non-carriers, while presymptomatic carriers did not show significant differences, although some early tau uptake was noted close to expected symptom onset.
View Article and Find Full Text PDF

Introduction: The Centiloid scale aims to harmonize amyloid beta (Aβ) positron emission tomography (PET) measures across different analysis methods. As Centiloids were created using PET/computerized tomography (CT) data and are influenced by scanner differences, we investigated the Centiloid transformation with data from Insight 46 acquired with PET/magnetic resonanceimaging (MRI).

Methods: We transformed standardized uptake value ratios (SUVRs) from 432 florbetapir PET/MRI scans processed using whole cerebellum (WC) and white matter (WM) references, with and without partial volume correction.

View Article and Find Full Text PDF

Importance: Undetected biological heterogeneity adversely impacts trials in Alzheimer's disease because rate of cognitive decline - and perhaps response to treatment - differs in subgroups. Recent results show that data-driven approaches can unravel the heterogeneity of Alzheimer's disease progression. The resulting stratification is yet to be leveraged in clinical trials.

View Article and Find Full Text PDF

Background: Amyloid-β (Aβ) accumulation is considered the earliest pathological change in Alzheimer's disease (AD). The Amyloid Imaging to Prevent Alzheimer's Disease (AMYPAD) consortium is a collaborative European framework across European Federation of Pharmaceutical Industries Associations (EFPIA), academic, and 'Small and Medium-sized enterprises' (SME) partners aiming to provide evidence on the clinical utility and cost-effectiveness of Positron Emission Tomography (PET) imaging in diagnostic work-up of AD and to support clinical trial design by developing optimal quantitative methodology in an early AD population.

The Amypad Studies: In the Diagnostic and Patient Management Study (DPMS), 844 participants from eight centres across three clinical subgroups (245 subjective cognitive decline, 342 mild cognitive impairment, and 258 dementia) were included.

View Article and Find Full Text PDF

Reducing electricity consumption is currently one of the most significant global issues. Luminaires and light sources are characterised by relatively low rated power values. However, due to their high number, they account for a noticeable share of the total volume of electricity consumption.

View Article and Find Full Text PDF

Current PET datasets are becoming larger, thereby increasing the demand for fast and reproducible processing pipelines. This paper presents a freely available, open source, Python-based software package called NiftyPAD, for versatile analyses of static, full or dual-time window dynamic brain PET data. The key novelties of NiftyPAD are the analyses of dual-time window scans with reference input processing, pharmacokinetic modelling with shortened PET acquisitions through the incorporation of arterial spin labelling (ASL)-derived relative perfusion measures, as well as optional PET data-based motion correction.

View Article and Find Full Text PDF

It is well known that accumulation of advanced glycation ends products (AGEs) lead to various diseases such as diabetes and diabetic complications. In this study we showed that hydrolysable tannin from Sumac (Rhus typhina L.)-3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-glucose (CHO) inhibited generation of glycation markers in bovine serum albumin such as AGEs, dityrosine, N'-formylkynurenine and kynurenine under high glucose treatment.

View Article and Find Full Text PDF

Purpose: A novel phantom-imaging platform, a set of software tools, for automated and high-precision imaging of the American College of Radiology (ACR) positron emission tomography (PET) phantom for PET/magnetic resonance (PET/MR) and PET/computed tomography (PET/CT) systems is proposed.

Methods: The key feature of this platform is the vector graphics design that facilitates the automated measurement of the knife-edge response function and hence image resolution, using composite volume of interest templates in a 0.5 mm resolution grid applied to all inserts of the phantom.

View Article and Find Full Text PDF

The assessment of the quality of synthesised/pseudo Computed Tomography (pCT) images is commonly measured by an intensity-wise similarity between the ground truth CT and the pCT. However, when using the pCT as an attenuation map (μ-map) for PET reconstruction in Positron Emission Tomography Magnetic Resonance Imaging (PET/MRI) minimising the error between pCT and CT neglects the main objective of predicting a pCT that when used as μ-map reconstructs a pseudo PET (pPET) which is as similar as possible to the gold standard CT-derived PET reconstruction. This observation motivated us to propose a novel multi-hypothesis deep learning framework explicitly aimed at PET reconstruction application.

View Article and Find Full Text PDF

Background: Detecting subtle-to-moderate biomarker changes such as those in amyloid PET imaging becomes increasingly relevant in the context of primary and secondary prevention of Alzheimer's disease (AD). This work aimed to determine if and when distribution volume ratio (DVR; derived from dynamic imaging) and regional quantitative values could improve statistical power in AD prevention trials.

Methods: Baseline and annualized % change in [C]PIB SUVR and DVR were computed for a global (cortical) and regional (early) composite from scans of 237 cognitively unimpaired subjects from the OASIS-3 database ( www.

View Article and Find Full Text PDF

Accurate regional brain quantitative PET measurements, particularly when using partial volume correction, rely on robust image registration between PET and MR images. We argue here that the precision, and hence the uncertainty, of MR-PET image registration is mainly driven by the registration implementation and the quality of PET images due to their lower resolution and higher noise compared to the structural MR images. We propose a dedicated uncertainty analysis for quantifying the precision of MR-PET registration, centred around the bootstrap resampling of PET list-mode events to generate multiple PET image realisations with different noise (count) levels.

View Article and Find Full Text PDF

Objective: To develop and evaluate a model for staging cortical amyloid deposition using PET with high generalizability.

Methods: Three thousand twenty-seven individuals (1,763 cognitively unimpaired [CU], 658 impaired, 467 with Alzheimer disease [AD] dementia, 111 with non-AD dementia, and 28 with missing diagnosis) from 6 cohorts (European Medical Information Framework for AD, Alzheimer's and Family, Alzheimer's Biomarkers in Daily Practice, Amsterdam Dementia Cohort, Open Access Series of Imaging Studies [OASIS]-3, Alzheimer's Disease Neuroimaging Initiative [ADNI]) who underwent amyloid PET were retrospectively included; 1,049 individuals had follow-up scans. With application of dataset-specific cutoffs to global standard uptake value ratio (SUVr) values from 27 regions, single-tracer and pooled multitracer regional rankings were constructed from the frequency of abnormality across 400 CU individuals (100 per tracer).

View Article and Find Full Text PDF

Uncompressed clinical data from modern positron emission tomography (PET) scanners are very large, exceeding 350 million data points (projection bins). The last decades have seen tremendous advancements in mathematical imaging tools many of which lead to non-smooth (i.e.

View Article and Find Full Text PDF

Pharmacokinetic modelling on dynamic positron emission tomography (PET) data is a quantitative technique. However, the long acquisition time is prohibitive for routine clinical use. Instead, the semi-quantitative standardised uptake value ratio (SUVR) from a shorter static acquisition is used, despite its sensitivity to blood flow confounding longitudinal analysis.

View Article and Find Full Text PDF

Background: The aim of the study was to evaluate differences in body image across different types of sports in highly trained female athletes.

Methods: 242 female individuals, aged 13-30 years (M = 20.0, SD = 4.

View Article and Find Full Text PDF

We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage.

View Article and Find Full Text PDF

Background: Increasing age is the biggest risk factor for dementia, of which Alzheimer's disease is the commonest cause. The pathological changes underpinning Alzheimer's disease are thought to develop at least a decade prior to the onset of symptoms. Molecular positron emission tomography and multi-modal magnetic resonance imaging allow key pathological processes underpinning cognitive impairment - including β-amyloid depostion, vascular disease, network breakdown and atrophy - to be assessed repeatedly and non-invasively.

View Article and Find Full Text PDF

Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data.

View Article and Find Full Text PDF

In this technical note we propose a rapid and scalable software solution for the processing of PET list-mode data, which allows the efficient integration of list mode data processing into the workflow of image reconstruction and analysis. All processing is performed on the graphics processing unit (GPU), making use of streamed and concurrent kernel execution together with data transfers between disk and CPU memory as well as CPU and GPU memory. This approach leads to fast generation of multiple bootstrap realisations, and when combined with fast image reconstruction and analysis, it enables assessment of uncertainties of any image statistic and of any component of the image generation process (e.

View Article and Find Full Text PDF

The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) offers unique possibilities. In this paper we aim to exploit the high spatial resolution of MRI to enhance the reconstruction of simultaneously acquired PET data. We propose a new prior to incorporate structural side information into a maximum a posteriori reconstruction.

View Article and Find Full Text PDF

Accurate characterisation of the scanner's point spread function across the entire field of view (FOV) is crucial in order to account for spatially dependent factors that degrade the resolution of the reconstructed images. The HRRT users' community resolution modelling reconstruction software includes a shift-invariant resolution kernel, which leads to transaxially non-uniform resolution in the reconstructed images. Unlike previous work to date in this field, this work is the first to model the spatially variant resolution across the entire FOV of the HRRT, which is the highest resolution human brain PET scanner in the world.

View Article and Find Full Text PDF