Background: Lung volume optimization maneuvers (LVOM) are necessary to make physiologic use of high-frequency oscillatory ventilation (HFOV), but lung behavior during such maneuvers has not been studied to determine lung volume changes after initiation of HFOV, to quantify recruitment versus derecruitment during the LVOM and to calculate the time to stabilization after a pressure change.
Methods: We performed a secondary analysis of prospectively collected data in subjects < 18 years on HFOV. Uncalibrated respiratory inductance plethysmography (RIP) tracings were used to quantify lung recruitment and derecruitment during the LVOM inflation and deflation.
Background: Obtaining a properly fitting non-invasive ventilation (NIV) mask to treat acute respiratory failure is a major challenge, especially in young children and patients with craniofacial abnormalities. Personalization of NIV masks holds promise to improve pediatric NIV efficiency. As current customization methods are relatively time consuming, this study aimed to test the air leak and surface pressure performance of personalized oronasal face masks using 3D printed soft materials.
View Article and Find Full Text PDFJ Neonatal Perinatal Med
December 2023
In this case report, we describe two repeated transcutaneous electromyography of the diaphragm (dEMG) measurements in an infant with suspected paresis of the right hemidiaphragm after cardiac surgery. The first measurement, performed at the time of diagnosis, showed a lower electrical activity of the right side of the diaphragm in comparison with the left side. The second measurement, performed after a period of expectative management, showed that electrical activity of the affected side had increased and was similar to the activity of the left diaphragm.
View Article and Find Full Text PDFContext: The negative effects of socioeconomic, environmental and ethnic inequalities on childhood respiratory diseases are known in the development of persistent asthma and can result in adverse outcomes. However, little is known about the effects of these disparities on pediatric intensive care unit (PICU) outcomes in respiratory diseases.
Objective: The purpose of this systematic review is to evaluate the literature on disparities in socioeconomic, environmental and ethnic determinants and PICU outcomes.
Non-invasive ventilation (NIV) is increasingly used in the support of acute respiratory failure in critically ill children admitted to the pediatric intensive care unit (PICU). One of the major challenges in pediatric NIV is finding an optimal fitting mask that limits air leakage, in particular for young children and those with specific facial features. Here, we describe the development of a pediatric head-lung model, based on 3D anthropometric data, to simulate pediatric NIV in a 1-year-old child, which can serve as a tool to investigate the effectiveness of NIV masks.
View Article and Find Full Text PDFBackground: Allowing the ventilated adult patient to breathe spontaneously may improve tidal volume (V) distribution toward the dependent lung regions, reduce shunt fraction, and decrease dead space. It has not been studied if these effects under various levels of ventilatory support also occur in children. We sought to explore the effect of level of ventilatory support on V distribution and end-expiratory lung volume (EELV) in spontaneously breathing ventilated children in the recovery phase of their acute respiratory failure.
View Article and Find Full Text PDFObjectives: Driving pressure (ratio of tidal volume over respiratory system compliance) is associated with mortality in acute respiratory distress syndrome. We sought to evaluate if such association could be identified in critically ill children.
Design: We studied the association between driving pressure on day 1 of mechanical ventilation and ventilator-free days at day 28 through secondary analyses of prospectively collected physiology data.
Non-invasive ventilation (NIV) is increasingly used in the supportive treatment of acute respiratory failure in children in the pediatric intensive care unit (PICU). However, finding an optimal fitting commercial available NIV face mask is one of the major challenges in daily practice, in particular for young children and those with specific facial features. Large air leaks and pressure-related skin injury due to suboptimal fit are important complications associated with NIV failure.
View Article and Find Full Text PDFObjectives: To explore the level and time course of patient-ventilator asynchrony in mechanically ventilated children and the effects on duration of mechanical ventilation, PICU stay, and Comfort Behavior Score as indicator for patient comfort.
Design: Secondary analysis of physiology data from mechanically ventilated children.
Setting: Mixed medical-surgical tertiary PICU in a university hospital.
Background: Titration of the continuous distending pressure during a staircase incremental-decremental pressure lung volume optimization maneuver in children on high-frequency oscillatory ventilation is traditionally driven by oxygenation and hemodynamic responses, although validity of these metrics has not been confirmed.
Methods: Respiratory inductance plethysmography values were used construct pressure-volume loops during the lung volume optimization maneuver. The maneuver outcome was evaluated by three independent investigators and labeled positive if there was an increase in respiratory inductance plethysmography values at the end of the incremental phase.
Objectives: We sought to investigate factors that affect the difference between the peak inspiratory pressure measured at the Y-piece under dynamic flow conditions and plateau pressure measured under zero-flow conditions (resistive pressure) during pressure controlled ventilation across a range of endotracheal tube sizes, respiratory mechanics, and ventilator settings.
Design: In vitro study.
Setting: Research laboratory.
Background: High-frequency oscillatory ventilation (HFOV) is a common but unproven management strategy in paediatric critical care. Oscillator settings have been traditionally guided by patient age and/or weight rather than by lung mechanics, thereby potentially negating any beneficial effects. We have adopted an open-lung HFOV strategy based on a corner frequency approach using an initial incremental-decremental mean airway pressure titration manoeuvre, a high frequency (8-15 Hz), and high power to initially target a proximal pressure amplitude (∆P) of 70-90 cm HO, irrespective of age or weight.
View Article and Find Full Text PDFUnlabelled: The number of children on commercial aircrafts is rising steeply and poses a need for their treating physicians to be aware of the physiologic effects and risks of air travel. The most important risk factors while flying are a decrease in partial oxygen pressure, expansion of trapped air volume, low cabin humidity, immobility, recirculation of air and limited options for medical emergencies. Because on-board medical emergencies mostly concern exacerbations of chronic disease, the medical history, stability of current disease and previous flight experience should be assessed before flight.
View Article and Find Full Text PDFPurpose: Much of the common practice in paediatric mechanical ventilation is based on personal experiences and what paediatric critical care practitioners have adopted from adult and neonatal experience. This presents a barrier to planning and interpretation of clinical trials on the use of specific and targeted interventions. We aim to establish a European consensus guideline on mechanical ventilation of critically children.
View Article and Find Full Text PDFBackground: Neuromuscular blockade (NMB) has been shown to improve outcome in acute respiratory distress syndrome (ARDS) in adults, challenging maintaining spontaneous breathing when there is severe lung injury. We tested in a prospective physiological study the hypothesis that continuous administration of NMB agents in mechanically ventilated children with severe acute hypoxemic respiratory failure (AHRF) improves the oxygenation index without a redistribution of tidal volume V toward non-dependent lung zones.
Methods: Oxygenation index, PaO/FiO ratio, lung mechanics (plateau pressure, mean airway pressure, respiratory system compliance and resistance), hemodynamics (heart rate, central venous and arterial blood pressures), oxygenation [oxygenation index (OI), PaO/FiO and SpO/FiO], ventilation (physiological dead space-to-V ratio) and electrical impedance tomography measured changes in end-expiratory lung volume (EELV), and V distribution was measured before and 15 min after the start of continuous infusion of rocuronium 1 mg/kg.
Objective: We aim to describe current clinical practice, the past decade of experience and factors related to improved outcomes for pediatric patients receiving high-frequency oscillatory ventilation. We have also modeled predictive factors that could help stratify mortality risk and guide future high-frequency oscillatory ventilation practice.
Design: Multicenter retrospective, observational questionnaire study.