Publications by authors named "Marketa Svarcova"

2-Thioxothiazolidin-4-one represents a versatile scaffold in drug development. The authors used it to prepare new potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors that can be utilized, e.g.

View Article and Find Full Text PDF

On the basis of previous reports, novel 2-benzoylhydrazine-1-carboxamides were designed as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Inhibitors of these enzymes have many clinical applications. 2-(Substituted benzoyl)hydrazine-1-carboxamides decorated with -methyl or tridecyl were prepared with three methods from commercially available or self-prepared hydrazides and isocyanates.

View Article and Find Full Text PDF

Novel antimycobacterial drugs are needed, especially those with dual activity against both actively growing and non-replicating subpopulations of mycobacteria. Isocitrate lyase (ICL) is one of proposed targets and this enzyme is inhibited by itaconic acid. That is why we have designed and prepared sixteen amides of itaconic acid and various anilines and amine antimicrobial drugs to evaluate them as potential inhibitors of ICL and antimycobacterial agents.

View Article and Find Full Text PDF

2,5-Disubstituted 1,3,4-oxadiazoles are privileged versatile scaffolds in medicinal chemistry that have exhibited diverse biological activities. Acetyl- (AChE) and butyrylcholinesterase (BChE) inhibitors are used, e.g.

View Article and Find Full Text PDF

A series of thirty-one hydrazones of aminoguanidine, nitroaminoguanidine, 1,3-diaminoguanidine, and (thio)semicarbazide were prepared from various aldehydes, mainly chlorobenzaldehydes, halogenated salicylaldehydes, 5-nitrofurfural, and isatin (yields of 50-99%). They were characterized by spectral methods. Primarily, they were designed and evaluated as potential broad-spectrum antimicrobial agents.

View Article and Find Full Text PDF

Background: Hydrazide-hydrazones have been known as scaffold with various biological activities including inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE). Cholinesterase inhibitors are mainstays of dementias' treatment.

Objective: Twenty-five iodinated hydrazide-hydrazones and their analogues were designed as potential central AChE and BuChE inhibitors.

View Article and Find Full Text PDF

Based on the isosterism concept, we have designed and synthesized homologous -alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides (from C to C) as potential antimicrobial agents and enzyme inhibitors. They were obtained from 4-(trifluoromethyl)benzohydrazide by three synthetic approaches and characterized by spectral methods. The derivatives were screened for their inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) via Ellman's method.

View Article and Find Full Text PDF

The development of novel drugs is essential for the treatment of tuberculosis and other mycobacterial infections in future. A series of N-alkyl-2-isonicotinoylhydrazine-1-carboxamides was synthesized from isoniazid (INH) and then cyclized to N-alkyl-5-(pyridin-4-yl)-1,3,4-oxadiazole-2-amines. All derivatives were characterised spectroscopically.

View Article and Find Full Text PDF

Forests cover approximately one-third of Central Europe. Oak (Quercus) and European beech (Fagus sylvatica) are considered the natural dominants at low and middle elevations, respectively. Many coniferous forests (especially of Picea abies) occur primarily at midelevations, but these are thought to have resulted from forestry plantations planted over the past 200 years.

View Article and Find Full Text PDF

Based on the presence of carbamoyl moiety, twenty salicylanilide N,N-disubstituted (thio)carbamates were investigated using Ellman's method for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). O-Aromatic (thio)carbamates exhibited weak to moderate inhibition of both cholinesterases with IC50 values within the range of 1.60 to 311.

View Article and Find Full Text PDF

Chorismate-utilizing enzymes (CUE) such as chorismate mutase, anthranilate synthase, chorismate pyruvate-lyase, 4-amino-4-deoxychorismate synthase, isochorismate synthase and salicylate synthase are responsible for converting chorismate into various products necessary for the survival of bacteria. The absence of these enzymes in humans and their importance in the virulence and survival of bacteria make them suitable targets for potential antimicrobial compounds. Furthermore, the CUE have significant structural homology and similar catalytic mechanisms, enabling the strategy of affecting multiple enzymes with one single inhibitor.

View Article and Find Full Text PDF

Antimycobacterially active salicylanilide diethyl phosphates were evaluated to identify their potential drug target(s) for the inhibition of several mycobacterial enzymes, including isocitrate lyase, L-alanine dehydrogenase (MtAlaDH), lysine ε-aminotransferase, chorismate mutase, and pantothenate synthetase. The enzymes are related to the nongrowing state of Mycobacterium tuberculosis. Salicylanilide diethyl phosphates represent new candidates with significant inhibitory activity especially against L-alanine dehydrogenase.

View Article and Find Full Text PDF