The endoplasmic reticulum (ER) is a dynamic organelle that is amenable to major restructuring. Introduction of recombinant ER-membrane-resident proteins that form homo oligomers is a known method of inducing ER proliferation: interaction of the proteins with each other alters the local structure of the ER network, leading to the formation large aggregations of expanded ER, sometimes leading to the formation of organized smooth endoplasmic reticulum (OSER). However, these membrane structures formed by ER proliferation are poorly characterized and this hampers their potential development for plant synthetic biology.
View Article and Find Full Text PDFBiomechanical properties of the cell wall (CW) are important for many developmental and adaptive responses in plants. Expansins were shown to mediate pH-dependent CW enlargement via a process called CW loosening. Here, we provide a brief overview of expansin occurrence in plant and non-plant species, their structure and mode of action including the role of hormone-regulated CW acidification in the control of expansin activity.
View Article and Find Full Text PDFExpansins facilitate cell expansion by mediating pH-dependent cell wall (CW) loosening. However, the role of expansins in controlling CW biomechanical properties in specific tissues and organs remains elusive. We monitored hormonal responsiveness and spatial specificity of expression and localization of expansins predicted to be the direct targets of cytokinin signaling in Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFGPI-anchored proteins display very diverse biological (biochemical and immunological) functions. An in silico analysis has revealed that the genome of contains 86 genes coding for putative GPI-anchored proteins (GPI-APs). Past research has demonstrated the involvement of GPI-APs in cell wall remodeling, virulence, and adhesion.
View Article and Find Full Text PDFInducible systems for transgene expression activated by a chemical inducer or an inducer of non-plant origin are desirable tools for both basic plant research and biotechnology. Although, the technology has been widely exploited in dicotyledonous model plants such as Arabidopsis, it has not been optimised for use with the monocotyledonous model species, namely rice. We have adapted the dexamethasone-inducible pOp6/LhGR system for rice and the results indicated that it is fast, sensitive and tightly regulated, with high levels of induction that remain stable over several generations.
View Article and Find Full Text PDFCurr Top Microbiol Immunol
September 2020
Glycosylphosphatidylinositol (GPI) anchored proteins are a class of proteins attached to the extracellular leaflet of the plasma membrane via a post-translational modification, the glycolipid anchor. GPI anchored proteins are expressed in all eukaryotes, from fungi to plants and animals. They display very diverse functions ranging from enzymatic activity, signaling, cell adhesion, cell wall metabolism, and immune response.
View Article and Find Full Text PDFUse of chemically inducible systems for transgene expression is a crucial requirement for modern plant biology research, as it allows (1) expression of transgenes that compromise plant viability or fertility when constitutively expressed and (2) spatiotemporal control of transgene expression levels. We describe the stringently regulated and highly responsive dexamethasone-inducible gene expression system pOp6/LhGR, which comprises the chimeric transcription activator LhGR and the corresponding pOp6 promoter. Upon induction, the LhGR activator binds to the pOp6 promoter and induces expression of the target gene of interest.
View Article and Find Full Text PDFThe fungal wall is pivotal for cell shape and function, and in interfacial protection during host infection and environmental challenge. Here, we provide the first description of the carbohydrate composition and structure of the cell wall of the rice blast fungus Magnaporthe oryzae. We focus on the family of glucan elongation proteins (Gels) and characterize five putative β-1,3-glucan glucanosyltransferases that each carry the Glycoside Hydrolase 72 signature.
View Article and Find Full Text PDFPlants respond to pathogen attack via a rapid burst of reactive oxygen species (ROS). However, ROS are also produced by fungal metabolism and are required for the development of infection structures in Magnaporthe oryzae. To obtain a better understanding of redox regulation in M.
View Article and Find Full Text PDFPlant-derived nitric oxide (NO) triggers defence, priming the onset of the hypersensitive response and restricting pathogen ingress during incompatibility. However, little is known about the role of pathogen-produced NO during pre-infection development and infection. We sought evidence for NO production by the rice blast fungus during early infection.
View Article and Find Full Text PDFThe major cause of athlete's foot is Trichophyton rubrum, a dermatophyte or fungal pathogen of human skin. To facilitate molecular analyses of the dermatophytes, we sequenced T. rubrum and four related species, Trichophyton tonsurans, Trichophyton equinum, Microsporum canis, and Microsporum gypseum.
View Article and Find Full Text PDFGTPases of the Rab1 subclass are essential for membrane traffic between the endoplasmic reticulum (ER) and Golgi complex in animals, fungi and plants. Rab1-related proteins in higher plants are unusual because sequence comparisons divide them into two putative subclasses, Rab-D1 and Rab-D2, that are conserved in monocots and dicots. We tested the hypothesis that the Rab-D1 and Rab-D2 proteins of Arabidopsis represent functionally distinct groups.
View Article and Find Full Text PDFMethods Cell Biol
February 2008
Fluorescent proteins have had a great impact on the way in which plant membrane traffic is studied. Here we review the uses to which these molecules have been put in this field of research and discuss the advantages and pitfalls of particular fluorescent protein derivatives in various applications and plant species. We discuss in detail the need for quantitative estimates of expression level and the potential of fluorescent proteins for quantitative assays of biosynthetic membrane traffic.
View Article and Find Full Text PDFFluorescent protein markers are widely used to report plant membrane traffic; however, effective protocols to quantify fluorescence or marker expression are lacking. Here the 20 residue self-cleaving 2A peptide from Foot and Mouth Disease Virus was used to construct polyproteins that expressed a trafficked marker in fixed stoichiometry with a reference protein in a different cellular compartment. Various pairs of compartments were simultaneously targeted.
View Article and Find Full Text PDFSeveral vector systems are available for tissue-specific transactivation or chemical induction of transgene expression in plants. The choice facing researchers is which promoter system to commit to as this determines the range and characteristics of the expression resources available. The decision will not be the same for all species or applications.
View Article and Find Full Text PDFWe describe pOp/LhGR, a dexamethasone-inducible derivative of the pOp/LhG4 transcription activation system, and its use in tobacco to regulate expression of uidA (encoding beta-glucuronidase; GUS) and the cytokinin-biosnythetic gene ipt. The pOp/LhGR system exhibited stringent regulation and strong induced phenotypes in soil and tissue culture. In conjunction with an improved target promoter, pOp6, that carries six copies of an optimized lac operator sequence the pOp6/LhGR system directed induced GUS activities that exceeded those obtained with pOp/LhG4 or the CaMV 35S promoter but without increased uninduced activity.
View Article and Find Full Text PDFTo facilitate glucocorticoid-inducible transgene expression from the pOp promoter in Arabidopsis the ligand-binding domain of a rat glucocorticoid receptor (GR LBD) was fused to the amino terminus of the synthetic transcription factor LhG4 to generate LhGR-N. Fusions bearing the GR LBD at other positions in LhG4 exhibited incomplete repression or inefficient induction. LhGR-N was stringently repressed in the absence of exogenous glucocorticoid but was fully activated by addition of 2 microm dexamethasone which resulted in 1000-fold increase in GUS reporter activity.
View Article and Find Full Text PDF