Publications by authors named "Markelov D"

Signal amplification by reversible exchange (SABRE) employs the non-equilibrium spin order of parahydrogen as a source of strong nuclear magnetic resonance (NMR) signal enhancement, with the objective of increasing NMR sensitivity. In SABRE, a parahydrogen molecule and a substrate form a transient polarization transfer complex. Performed within the high magnetic field of an NMR spectrometer, SABRE enables the hyperpolarization of nuclear spins without additional polarizers.

View Article and Find Full Text PDF

The radius of gyration, Rg, and the hydrodynamic radius, Rh, are the main experimental parameters that characterize the size of linear and branched macromolecules. In the case of dendrimers in solution, the ratio Rg/Rh, depending on the global conformation, varies from 1 (for a Gaussian soft sphere) to 3/5 (for a hard sphere). However, for high-generation dendrimers, this ratio may be less than the limiting value for a hard sphere.

View Article and Find Full Text PDF

The development of new nanocontainers for hydrophobic drugs is one of the most important tasks of drug delivery. Dendrimers with hydrophobic interiors and soluble terminal groups have already been used as drug carriers. However, the most convenient candidates for this purpose are peptide dendrimers since their interiors could be modified by hydrophobic amino acid residues with a greater affinity for the transported molecules.

View Article and Find Full Text PDF

The diffusion properties and hydrodynamic radius, , of macromolecules are important for theoretical studies and practical application. Moreover, comparison of values obtained from simulation and experimental data is used to check the correctness of simulation results. Here, we study the translation mobility of poly(butylcarbosilane) dendrimers in chloroform solution using molecular dynamics simulations and consider simulation details that may influence the accuracy of the result.

View Article and Find Full Text PDF

Membrane technology is an actively developing area of modern societies; with the help of high-performance membranes, it is possible to separate various mixtures for many industrial tasks. The objective of this study was to develop novel effective membranes based on poly(vinylidene fluoride) (PVDF) by its modification with various nanoparticles (TiO, Ag-TiO, GO-TiO, and MWCNT/TiO). Two types of membranes have been developed: dense membranes for pervaporation and porous membranes for ultrafiltration.

View Article and Find Full Text PDF

The rheological properties of macromolecules represent one of the fundamental features of polymer systems which expand the possibilities of using and developing new materials based on them. In this work, we studied the shear-stress relaxation of the second generation PAMAM and PPI dendrimer melts by atomistic molecular dynamics simulation. The time dependences of relaxation modulus () and the frequency dependences of the storage and loss moduli were obtained.

View Article and Find Full Text PDF

In this paper we study two lysine-based peptide dendrimers with Lys-His-Arg and Lys-Arg-His repeating units and terminal lysine groups. Combination of His and Arg properties in a dendrimer could be important for biomedical applications, especially for prevention of dendrimer aggregation and for penetration of dendrimers through various cell membranes. We describe the synthesis of these dendrimers and the confirmation of their structure using 1D and 2D Nuclear Magnetic Resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Functionalizing the internal structure of classical dendrimers is a new way of tailoring their properties. Using atomistic molecular dynamics simulations, we investigate the rheological behavior of functionalized dendrimer (FD) melts obtained by modifying the branching of carbosilane dendrimers (CSD). The time (relaxation modulus ()) and frequency (storage ' and loss '' moduli) dependencies of the dynamic modulus are obtained.

View Article and Find Full Text PDF

Novel peptide dendrimer with Lys-2His repeating units was recently synthesized, studied by NMR (Molecules, 2019, 24, 2481) and tested as a nanocontainer for siRNA delivery (Int. J. Mol.

View Article and Find Full Text PDF

Detailed experimental and comprehensive theoretical analysis of singlet-triplet conversion in molecular hydrogen dissolved in a solution together with organometallic complexes used in experiments with parahydrogen (the H molecule in its nuclear singlet spin state) is reported. We demonstrate that this conversion, which gives rise to formation of orthohydrogen (the H molecule in its nuclear triplet spin state), is a remarkably efficient process that strongly reduces the resulting NMR (nuclear magnetic resonance) signal enhancement, here of N nuclei polarized at high fields using suitable NMR pulse sequences. We make use of a simple improvement of traditional pulse sequences, utilizing a single pulse on the proton channel that gives rise to an additional strong increase of the signal.

View Article and Find Full Text PDF

New peptide dendrimer with Lys-2Arg repeating units was recently studied experimentally by NMR (RSC Advances, 2019, 9, 18018) and tested as gene carrier successfully (Int. J. Mol.

View Article and Find Full Text PDF

In this paper, we perform computer simulation of two lysine-based dendrimers with Lys-2Lys and Lys-2Gly repeating units. These dendrimers were recently studied experimentally by NMR (Sci. Reports, 2018, 8, 8916) and tested as carriers for gene delivery (Bioorg.

View Article and Find Full Text PDF

Peptide dendrimers, due to their biocompatibility and low toxicity, are highly promising candidates as nanocarriers for drugs and genes. The development of this kind of delivery system requires reliable monitoring of their metabolic and biological pathways. In this respect, hydrogen isotope labeling has tremendous importance, being a safe tool for detection of the labeled nanocarriers.

View Article and Find Full Text PDF

Due to their well-defined structure, multivalency, biocompatibility, and low toxicity, lysine dendrimers can be used as safe and efficient nanocarriers for drug and gene delivery. One useful strategy for improving the gene delivery properties of dendrimers is modification with arginine amino acid (Arg) residues. Incorporation of Arg residues could be favorable for the enhancement in transfection efficiency of lysine based dendrimers.

View Article and Find Full Text PDF

Poly-l-ysine dendrigrafts are promising systems for biomedical applications due to their biodegradability, biocompatibility, and similarity to dendrimers. There are many papers about the use of dendrigrafts as nanocontainers for drug delivery. At the same time, the number of studies about their physical properties is limited, and computer simulations of dendrigrafts are almost absent.

View Article and Find Full Text PDF
Article Synopsis
  • - Peptide dendrimers are promising for biomedical uses because they are biocompatible and have low toxicity, making them suitable for drug and gene delivery as well as nanoparticle synthesis.
  • - This study tests two theories regarding dendrimers: that NMR relaxations are unaffected by excluded volume effects and that the mobility of side and terminal segments is similar.
  • - Results show that temperature-related NMR relaxations of inner groups in two types of dendrimers are nearly the same, supporting the first theory, while terminal groups also show similar behavior, backing the second theory.
View Article and Find Full Text PDF

Temperature dependences are compared for H and C NMR 1/T curves relaxation rates in three imidazolium-based ionic liquids (ILs), namely, in [bmim]PF , [bmim]BF , and [emim]CH COO. C curves show alike behavior for all three ILs and follow a well-known Bloembergen-Pound-Purcell (BPP) equation. On the contrary, an essential part of H curves differ strongly from corresponding C ones and also have different shapes for different ILs.

View Article and Find Full Text PDF

Melts of polybutylcarbosilane (PBC) dendrimers from third (G3) up to sixth (G6) generations are investigated by H NMR spectroscopy in a wide temperature range up to 493 K. At room temperature, NMR spectra of G3-G5 dendrimers exhibit resolved, solution-like spectra ("liquid" phase). In contrast, the spectrum of the G6 dendrimer is characterized by a single unresolved broad line at whole temperature range, which supports the presence of an anomalous phase state of G6 at temperatures higher than glass transition temperature.

View Article and Find Full Text PDF

We study the dynamics of local bond orientation in regular hyperbranched polymers modeled by Vicsek fractals. The local dynamics is investigated through the temporal autocorrelation functions of single bonds and the corresponding relaxation forms of the complex dielectric susceptibility. We show that the dynamic behavior of single segments depends on their remoteness from the periphery rather than on the size of the whole macromolecule.

View Article and Find Full Text PDF

We have studied copolymer dendrimer structure: carbosilane dendrimers with terminal phenylbenzoate mesogenic groups attached by poly(ethylene) glycol (PEG) spacers. In this system PEG spacers are additional tuning to usual copolymer structure: dendrimer with terminal mesogenic groups. The dendrimer macromolecules were investigated in a dilute chloroform solution by (1)H NMR methods (spectra and relaxations).

View Article and Find Full Text PDF

NMR relaxation experiments are widely used to investigate the local orientation mobility in dendrimers. In particular, the NMR method allows one to measure the spin-lattice relaxation rate, 1/T1, which is connected with the orientational autocorrelation function (ACF) of NMR active groups. We calculate the temperature (Θ) and frequency (ω) dependences of the spin-lattice NMR relaxation rates for segments and NMR active CH2 groups in poly-L-lysine (PLL) dendrimers in water, on the basis of full-atomic molecular dynamics simulations.

View Article and Find Full Text PDF

By using the Scheutjens-Fleer self-consistent field approach, the structure of the fourth-generation dendrimer with attached terminal chemically different oligomeric segments is studied theoretically. It is demonstrated that an incompatibility of terminal segments with inner dendrimer units leads to formation of a "hollow" core with reduced polymer density in the dendrimer center. This effect is enhanced with a deterioration in the solvent quality for terminal segments.

View Article and Find Full Text PDF

We study the orientational properties of labeled segments in semiflexible dendrimers making use of the viscoelastic approach of Dolgushev and Blumen [J. Chem. Phys.

View Article and Find Full Text PDF

The temperature dependencies of (13)C NMR relaxation rates in [bmim]PF6 ionic liquid have been measured and the characteristic times (τc) for the cation reorientation have been recalculated. We found the origin of the incorrect τc temperature dependencies that were earlier reported for ring carbons in a number of imidazolium-based ILs. After a correction of the approach (13)C T1, the relaxation data allowed us to obtain the characteristic times for an orientation mobility of each carbon, and a complicated experiment, such as NOE, was not required.

View Article and Find Full Text PDF

Poly-L-lysine (PLL) dendrimers are promising systems for biomedical applications due to their biocompatibility. These dendrimers have a specific topology: two spacers of different lengths come out of each branching point and thus the branching is asymmetric. Because of this asymmetry terminal groups are located at branches of different lengths, unlike dendrimers with a symmetric branching.

View Article and Find Full Text PDF