ACS Appl Mater Interfaces
October 2021
The increasing number of devices needed by wearable systems to bring radical advances in healthcare, robotics, and human-machine interfaces is a threat to their growth if the integration and energy-related challenges are not managed. A natural solution is to reduce the number of devices while retaining the functionality or simply using multifunctional devices, as demonstrated here through a stretchable supercapacitor (SSC) with intrinsic strain sensing. The presented SSC was obtained by electrodeposition of nanoflower MnO on fabric (as a pseudocapacitive electrode) and three-dimensional conductive wrapping of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) to boost the performance.
View Article and Find Full Text PDFThis paper presents a textile-based stretchable microstrip patch antenna with intrinsic strain for e-textiles with seamlessly integrated multifunctional devices. Several microstrip antennas have been developed with the patch alone (stretchable up to 40%) or both the patch and the ground plane (stretchable up to 100%) meshed by using rectangular serpentine units. The changes in the resonant frequency of the meshed antennas, as a result of stretching, have been exploited to demonstrate the intrinsic uniaxial strain sensing.
View Article and Find Full Text PDFAs a result of the novel Coronavirus disease (COVID-19) outbreak, a surge is witnessed in the demand for mechanical ventilators needed for treating affected patients. With the rapidly virus spreading around the globe, the shortage of ventilators becomes a global challenge and numerus efforts are followed. While industry mobilizes toward producing medical grade equipment, a number of low-cost and less complex emergency ventilators have been developed, mainly through academic and open-source channels, with a hope to meet any temporary needs gap until medical grade ventilator provision becomes sufficient.
View Article and Find Full Text PDF