Publications by authors named "Markace Rainey"

Ion mobility (IM) spectrometry provides semiorthogonal data to mass spectrometry (MS), showing promise for identifying unknown metabolites in complex non-targeted metabolomics data sets. While current literature has showcased IM-MS for identifying unknowns under near ideal circumstances, less work has been conducted to evaluate the performance of this approach in metabolomics studies involving highly complex samples with difficult matrices. Here, we present a workflow incorporating molecular formula annotation and MS/MS structure elucidation using SIRIUS 4 with experimental IM collision cross-section (CCS) measurements and machine learning CCS predictions to identify differential unknown metabolites in mutant strains of .

View Article and Find Full Text PDF

Metabolite annotation continues to be the widely accepted bottleneck in nontargeted metabolomics workflows. Annotation of metabolites typically relies on a combination of high-resolution mass spectrometry (MS) with parent and tandem measurements, isotope cluster evaluations, and Kendrick mass defect (KMD) analysis. Chromatographic retention time matching with standards is often used at the later stages of the process, which can also be followed by metabolite isolation and structure confirmation utilizing nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

The identification of xenobiotics in nontargeted metabolomic analyses is a vital step in understanding human exposure. Xenobiotic metabolism, transformation, excretion, and coexistence with other endogenous molecules, however, greatly complicate the interpretation of features detected in nontargeted studies. While mass spectrometry (MS)-based platforms are commonly used in metabolomic measurements, deconvoluting endogenous metabolites from xenobiotics is also often challenged by the lack of xenobiotic parent and metabolite standards as well as the numerous isomers possible for each small molecule / feature.

View Article and Find Full Text PDF

The interpretation of ion mobility coupled to mass spectrometry (IM-MS) data to predict unknown structures is challenging and depends on accurate theoretical estimates of the molecular ion collision cross section (CCS) against a buffer gas in a low or atmospheric pressure drift chamber. The sensitivity and reliability of computational prediction of CCS values depend on accurately modeling the molecular state over accessible conformations. In this work, we developed an efficient CCS computational workflow using a machine learning model in conjunction with standard DFT methods and CCS calculations.

View Article and Find Full Text PDF