Breast cancer is characterized by physical changes that occur in the tumor microenvironment throughout growth and metastasis of tumors. Extracellular matrix stiffness increases as tumors develop and spread, with stiffer environments thought to correlate with poorer disease prognosis. Changes in extracellular stiffness and other physical characteristics are sensed by integrins which integrate these extracellular cues to intracellular signaling, resulting in modulation of proliferation and invasion.
View Article and Find Full Text PDFMyocardin-related transcription factors (MRTFs) play a central role in the regulation of actin expression and cytoskeletal dynamics that are controlled by Rho GTPases. SRF is a ubiquitous transcription factor strongly expressed in muscular tissues. The depletion of SRF in the adult mouse heart leads to severe dilated cardiomyopathy associated with the down-regulation of target genes encoding sarcomeric proteins including α-cardiac actin.
View Article and Find Full Text PDFAssessing the quality of localisation microscopy images is highly challenging due to the difficulty in reliably detecting errors in experimental data. The most common failure modes are the biases and errors produced by the localisation algorithm when there is emitter overlap. Also known as the high density or crowded field condition, significant emitter overlap is normally unavoidable in live cell imaging.
View Article and Find Full Text PDFThe expression of α-cardiac actin, a major constituent of the cytoskeleton of cardiomyocytes, is dramatically decreased in a mouse model of dilated cardiomyopathy triggered by inducible cardiac-specific serum response factor (Srf) gene disruption that could mimic some forms of human dilated cardiomyopathy. To investigate the consequences of the maintenance of α-cardiac actin expression in this model, we developed a new transgenic mouse based on Cre/LoxP strategy, allowing together the induction of SRF loss and a compensatory expression of α-cardiac actin. Here, we report that maintenance of α-cardiac actin within cardiomyocytes temporally preserved cytoarchitecture from adverse cardiac remodeling through a positive impact on both structural and transcriptional levels.
View Article and Find Full Text PDF