Microfluidics enables the creation of monodisperse, micron-scale aqueous droplets, or other compartments. These droplets serve as picolitre-volume reaction chambers which can be utilized for various chemical assays or reactions. Here we describe the use of a microfluidic droplet generator to encapsulate single cells within hollow hydrogel microparticles called PicoShells.
View Article and Find Full Text PDFStudying microbes at the single-cell level in space can accelerate human space exploration both via the development of novel biotechnologies and via the understanding of cellular responses to space stressors and countermeasures. High-throughput technologies for screening natural and engineered cell populations can reveal cellular heterogeneity and identify high-performance cells. Here, we present a method to desiccate and preserve microbes in nanoliter-scale compartments, termed PicoShells, which are microparticles with a hollow inner cavity.
View Article and Find Full Text PDFTechniques to analyze and sort single cells based on functional outputs, such as secreted products, have the potential to transform our understanding of cellular biology as well as accelerate the development of next-generation cell and antibody therapies. However, secreted molecules rapidly diffuse away from cells, and analysis of these products requires specialized equipment and expertise to compartmentalize individual cells and capture their secretions. Herein, we describe methods to fabricate hydrogel-based chemically functionalized microcontainers, which we call nanovials, and demonstrate their use for sorting single viable cells based on their secreted products at high-throughput using only commonly accessible laboratory infrastructure.
View Article and Find Full Text PDFProduction of high-energy lipids by microalgae may provide a sustainable energy source that can help tackle climate change. However, microalgae engineered to produce more lipids usually grow slowly, leading to reduced overall yields. Unfortunately, culture vessels used to select cells based on growth while maintaining high biomass production, such as well plates, water-in-oil droplet emulsions, and nanowell arrays, do not provide production-relevant environments that cells experience in scaled-up cultures (e.
View Article and Find Full Text PDFNucleic acid amplification assays including loop-mediated isothermal amplification (LAMP) are routinely used in diagnosing diseases and monitoring water and food quality. The results of amplification in these assays are commonly measured with an analog fluorescence readout, which requires specialized optical equipment and can lack quantitative precision. Digital analysis of amplification in small fluid compartments based on exceeding a threshold fluorescence level can enhance the quantitative precision of nucleic acid assays (i.
View Article and Find Full Text PDFMicroalgae are an attractive feedstock organism for sustainable production of biofuels, chemicals, and biomaterials, but the ability to rationally engineer microalgae to enhance production has been limited. To enable the evolution-based selection of new hyperproducing variants of microalgae, a method is developed that combines phase-transitioning monodisperse gelatin hydrogel droplets with commercial flow cytometric instruments for high-throughput screening and selection of clonal populations of cells with desirable properties, such as high lipid productivity per time traced over multiple cell cycles. It is found that gelatin microgels enable i) the growth and metabolite (e.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2018
The asthma-obesity syndrome represents a major public health concern that disproportionately contributes to asthma severity and induces insensitivity to therapy. To date, no study has shown an intrinsic difference between human airway smooth muscle (HASM) cells derived from nonobese subjects and those derived from obese subjects. The objective of this study was to address whether there is a greater response to agonist-induced calcium mobilization, phosphorylation of myosin light chain (MLC), and greater shortening in HASM cells derived from obese subjects.
View Article and Find Full Text PDFHydrogel droplets encapsulating cells and molecules provide a unique platform in biochemistry, biology, and medicine, including single-cell and single-molecule analysis, directed molecular evolution, and detection of cellular secretions. The ability to prepare hydrogel droplets with high monodispersity can lead to synchronization of populations, more controlled biomaterials, and more quantitative assays. Here, we present an inertial microfluidic device for passive, continuous, and high-throughput sorting of hydrogel droplets by size.
View Article and Find Full Text PDF