Publications by authors named "Mark Zylka"

There is a diversity of chemicals to which humans are potentially exposed. Few of these chemicals have linked human biomonitoring data, and most have very limited neurotoxicity testing. Of particular concern are environmental exposures impacting children, who constitute a population of heightened susceptibility due to rapid neural growth and plasticity, yet lack biomonitoring data compared to other age/population subgroups.

View Article and Find Full Text PDF

We previously developed an adeno-associated virus (AAV) Cas9 gene therapy for Angelman syndrome that integrated into the genome and prematurely terminated Ube3a-ATS. Here, we assessed the performance of 3 additional AAV vectors containing S. aureus Cas9 in vitro and in vivo, and 25 vectors containing N.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how gene regulation at non-coding regions associated with brain traits can vary based on specific contexts, particularly focusing on the Wnt pathway in human neural progenitors from 82 donors.
  • - Researchers found that certain genetic variants linked to brain structures and neuropsychiatric disorders were more prevalent in regions responsive to Wnt activation, indicating context-dependent regulatory effects.
  • - Activation of the Wnt pathway significantly improved the detection of genetic influences on gene regulation and revealed new regulatory elements, suggesting that these genetic variants play critical roles in shaping adult brain traits and behaviors during neurodevelopment.
View Article and Find Full Text PDF

Facial grimacing is used to quantify spontaneous pain in mice and other mammals, but scoring relies on humans with different levels of proficiency. Here, we developed a cloud-based software platform called PainFace ( http://painface.net ) that uses machine learning to detect 4 facial action units of the mouse grimace scale (orbitals, nose, ears, whiskers) and score facial grimaces of black-coated C57BL/6 male and female mice on a 0 to 8 scale.

View Article and Find Full Text PDF

Gene-editing technologies promise to create a new class of therapeutics that can achieve permanent correction with a single intervention. Besides eliminating mutant alleles in familial disease, gene-editing can also be used to favorably manipulate upstream pathophysiologic events and alter disease-course in wider patient populations, but few such feasible therapeutic avenues have been reported. Here we use CRISPR-Cas9 to edit the last exon of amyloid precursor protein (), relevant for Alzheimer's disease (AD).

View Article and Find Full Text PDF

Background: The open field assay is used to study anxiety-related traits and anxiolytic drugs in rodents. This assay entails measuring locomotor activity and time spent in the center of a chamber that is maintained at ambient room temperature. However, the ambient temperature in most laboratories varies daily and seasonally and can differ between buildings.

View Article and Find Full Text PDF

The study measured the levels of azoxystrobin (AZ) and thiabendazole (TBZ) in wallboards and metabolite levels of these fungicides in children. The paper covering of wallboard samples contained a higher concentration of AZ and TBZ than the gypsum core, and similar amounts (w/w) of these two fungicides were present in the samples. These data suggest that commercial products containing a 1:1 (w/w) amount of AZ and TBZ, such as Sporgard® WB or Azo Tech™, were applied to the wallboard paper.

View Article and Find Full Text PDF

The rubber antioxidant 6PPD has gained significant attention due to its highly toxic transformation product, 6PPD-quinone (6PPDQ). Despite their detection in urines of pregnant women, the placental transfer and developmental toxicity of 6PPD and 6PPDQ are unknown. Here, we treated C57Bl/6 mice with 4 mg/kg 6PPD or 6PPDQ to investigate their urine excretion and placental transfer.

View Article and Find Full Text PDF

The E3 ubiquitin ligase Ube3a is biallelically expressed in neural progenitors and glial cells, suggesting that UBE3A gain-of-function mutations might cause neurodevelopmental disorders irrespective of parent of origin. Here, we engineered a mouse line that harbors an autism-linked UBE3A (T503A in mouse) gain-of-function mutation and evaluated phenotypes in animals that inherited the mutant allele paternally, maternally, or from both parents. We find that paternally and maternally expressed UBE3A results in elevated UBE3A activity in neural progenitors and glial cells.

View Article and Find Full Text PDF

Gene regulatory effects in bulk-post mortem brain tissues are undetected at many non-coding brain trait-associated loci. We hypothesized that context-specific genetic variant function during stimulation of a developmental signaling pathway would explain additional regulatory mechanisms. We measured chromatin accessibility and gene expression following activation of the canonical Wnt pathway in primary human neural progenitors from 82 donors.

View Article and Find Full Text PDF

Background: Bipolar disorder is a highly heritable neuropsychiatric condition affecting more than 1% of the human population. Lithium salts are commonly prescribed as a mood stabilizer for individuals with bipolar disorder. Lithium is clinically effective in approximately half of treated individuals, and their genetic backgrounds are known to influence treatment outcomes.

View Article and Find Full Text PDF

Numerous autism spectrum disorder (ASD) risk genes are associated with Wnt signaling, suggesting that brain development may be especially sensitive to genetic perturbation of this pathway. Additionally, valproic acid, which modulates Wnt signaling, increases risk for ASD when taken during pregnancy. We previously found that an autism-linked gain-of-function mutant construct hyperactivated canonical Wnt signaling, providing a genetic means to elevate Wnt signaling above baseline levels.

View Article and Find Full Text PDF
Article Synopsis
  • * A set of key genes, including Usp11 and Wars2, was found to be altered in these mice at different ages, with CHD8 shown to directly interact with their genetic regions.
  • * Older Chd8 mice exposed to DM also exhibited more severe symptoms and changes in gene expression related to vascular health, highlighting how genetic factors and environmental influences together shape autism-related traits throughout development.
View Article and Find Full Text PDF

Background: Azoxystrobin (AZ) is a broad-spectrum strobilurin fungicide that is used in agriculture and was recently added to mold- and mildew-resistant wallboards. AZ was found to have toxic effects in animals at embryonic stages and was listed as a frontline target for biomonitoring in children.

Objectives: This study investigated exposure to AZ in pregnant women and young children, whether AZ could be transferred from an exposed mother to offspring, and whether AZ or one of its primary metabolites, AZ-acid, was neurotoxic .

View Article and Find Full Text PDF

In recent years, a substantial amount of data have supported an active role of gut microbiota in mediating mammalian brain function and health. Mining gut microbiota and their metabolites for neuroprotection is enticing but requires that the fundamental biochemical details underlying such microbiota-brain crosstalk be deciphered. While a neuronal gut-brain axis (through the vagus nerve) is not disputable, accumulating studies also point to a humoral route (via blood/lymphatic circulation) by which innumerable microbial molecular cues translocate from local gut epithelia to circulation with potentials to further cross the blood-brain barrier and reach the brain.

View Article and Find Full Text PDF

Tissue-clearing methods allow every cell in the mouse brain to be imaged without physical sectioning. However, the computational tools currently available for cell quantification in cleared tissue images have been limited to counting sparse cell populations in stereotypical mice. Here, we introduce NuMorph, a group of analysis tools to quantify all nuclei and nuclear markers within the mouse cortex after clearing and imaging by light-sheet microscopy.

View Article and Find Full Text PDF

Peripheral nerve injury induces long-term pro-inflammatory responses in spinal cord glial cells that facilitate neuropathic pain, but the identity of endogenous cells that resolve spinal inflammation has not been determined. Guided by single-cell RNA sequencing (scRNA-seq), we found that MRC1 spinal cord macrophages proliferated and upregulated the anti-inflammatory mediator Cd163 in mice following superficial injury (SI; nerve intact), but this response was blunted in nerve-injured animals. Depleting spinal macrophages in SI animals promoted microgliosis and caused mechanical hypersensitivity to persist.

View Article and Find Full Text PDF

Research with rodents is crucial for expanding our understanding of genetic and environmental risk factors for neurodevelopmental disorders (NDD). However, there is growing concern about the number of animal studies that are difficult to replicate, potentially undermining the validity of results. These concerns have prompted funding agencies and academic journals to implement more rigorous standards in an effort to increase reproducibility in research.

View Article and Find Full Text PDF

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by a mutation or deletion of the maternally inherited UBE3A allele. In neurons, the paternally inherited UBE3A allele is silenced in cis by a long non-coding RNA called UBE3A-ATS. Here, as part of a systematic screen, we found that Cas9 can be used to activate ('unsilence') paternal Ube3a in cultured mouse and human neurons when targeted to Snord115 genes, which are small nucleolar RNAs that are clustered in the 3' region of Ube3a-ATS.

View Article and Find Full Text PDF
Article Synopsis
  • The laboratory mouse is the leading model in biomedical research due to its well-studied genome, but genetic quality control (QC) in mouse studies lacks standardization and cost-effective methods.* -
  • The MiniMUGA is a new genetic QC platform featuring over 11,000 probes that offers advantages like chromosomal sex determination, substrain discrimination, and easy-to-read reports on genetic data.* -
  • Testing MiniMUGA on nearly 7,000 samples showed it performs well, matching or exceeding earlier versions in accuracy, and it also provides new consensus genotypes for multiple inbred mouse strains.*
View Article and Find Full Text PDF

Background: Chromodomain helicase DNA-binding protein 8 (Chd8) is a high-confidence risk gene for autism spectrum disorder (ASD). However, how Chd8 haploinsufficiency impairs gene expression in the brain and impacts behavior at different stages of life is unknown.

Methods: We generated a mutant mouse line with an ASD-linked loss-of-function mutation in Chd8 (V986*; stop codon mutation).

View Article and Find Full Text PDF

Topoisomerase 1 (TOP1) relieves torsional stress in DNA during transcription and facilitates the expression of long (>100 kb) genes, many of which are important for neuronal functions. To evaluate how loss of Top1 affected neurons in vivo, we conditionally deleted (cKO) Top1 in postmitotic excitatory neurons in the mouse cerebral cortex and hippocampus. Top1 cKO neurons develop properly, but then show biased transcriptional downregulation of long genes, signs of DNA damage, neuroinflammation, increased poly(ADP-ribose) polymerase-1 (PARP1) activity, single-cell somatic mutations, and ultimately degeneration.

View Article and Find Full Text PDF