Publications by authors named "Mark Ziemann"

Metabolic reprogramming occurs in cardiomyopathy and heart failure contributing to progression of the disease. Activation of cardiac Hippo pathway signaling has been implicated in mediating mitochondrial dysfunction and metabolic reprogramming in cardiomyopathy, albeit influence of Hippo pathway on lipid profile is unclear. Using a dual-omics approach, we determined alterations of cardiac lipids in a mouse model of cardiomyopathy due to enhanced Hippo signaling and explored molecular mechanisms.

View Article and Find Full Text PDF

Objective: Osteoarthritis (OA) is a disease impacting the synovial joint complex, yet transcriptional changes specific to shoulder OA remain underexplored. This study aims to profile transcriptomic changes in periarticular tissues from patients undergoing shoulder replacement for OA. By correlating these profiles with QuickDASH scores-a validated measure of worsening shoulder function-this research seeks to understand the gene expression changes associated with clinical decline.

View Article and Find Full Text PDF

Mitochondria are central to cellular function, particularly in metabolically active tissues such as skeletal muscle. Nuclear-encoded RNAs typically localize within the nucleus and cytosol but a small population may also translocate to subcellular compartments such as mitochondria. We aimed to investigate the nuclear-encoded RNAs that localize within the mitochondria of skeletal muscle cells and tissue.

View Article and Find Full Text PDF

Motivation: Overrepresentation analysis (ORA) is used widely to assess the enrichment of functional categories in a gene list compared to a background list. ORA is therefore a critical method in the interpretation of 'omics data, relating gene lists to biological functions and themes. Although ORA is hugely popular, we and others have noticed two potentially undesired behaviours of some ORA tools.

View Article and Find Full Text PDF

Patients with asthma experience elevated rates of mental illness. However, the molecular links underlying such lung-brain crosstalk remain ambiguous. Hypothalamic dysfunction is observed in many psychiatric disorders, particularly those with an inflammatory component due to many hypothalamic regions being unprotected by the blood-brain barrier.

View Article and Find Full Text PDF

Infinium Methylation BeadChip arrays remain one of the most popular platforms for epigenome-wide association studies, but tools for downstream pathway analysis have their limitations. Functional class scoring (FCS) is a group of pathway enrichment techniques that involve the ranking of genes and evaluation of their collective regulation in biological systems, but the implementations described for Infinium methylation array data do not retain direction information, which is important for mechanistic understanding of genomic regulation. Here, we evaluate several candidate FCS methods that retain directional information.

View Article and Find Full Text PDF

Phytophthora cinnamomi is an oomycete plant pathogen with a host range of almost 5000 plant species worldwide and therefore poses a serious threat to biodiversity. Omics technology has provided significant progress in our understanding of oomycete biology, however, transformation studies of Phytophthora for gene functionalisation are still in their infancy. Only a limited number of Phytophthora species have been successfully transformed and gene edited to elucidate the role of particular genes.

View Article and Find Full Text PDF

There are epidemiological associations between obesity and type 2 diabetes, cardiovascular disease and Alzheimer's disease. The role of amyloid beta 42 (Aβ) in these diverse chronic diseases is obscure. Here we show that adipose tissue releases Aβ, which is increased from adipose tissue of male mice with obesity and is associated with higher plasma Aβ.

View Article and Find Full Text PDF

Computational reproducibility is a simple premise in theory, but is difficult to achieve in practice. Building upon past efforts and proposals to maximize reproducibility and rigor in bioinformatics, we present a framework called the five pillars of reproducible computational research. These include (1) literate programming, (2) code version control and sharing, (3) compute environment control, (4) persistent data sharing and (5) documentation.

View Article and Find Full Text PDF

Salmonella Weltevreden is an emerging pathogen associated with human diarrhea, and knowledge of the genomics and epidemiology of this serovar is still limited. In this study, we performed whole-genome sequencing of 96 Weltevreden isolates recovered from diarrheal patients and 62 isolates from food animals in China between 2006 and 2017. Together, with an additional 199 genome sequences of .

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a polygenic disorder with few risk variants showing robust replication in large-scale genome-wide association studies. To understand the role of DNA methylation, it is important to have the prevailing genomic view to distinguish key sequence elements that influence gene expression. This is particularly challenging for DN because genome-wide methylation patterns are poorly defined.

View Article and Find Full Text PDF

Despite increasing knowledge about the factors involved in the progression of diabetic complications, diabetic kidney disease (DKD) continues to be a major health burden. Current therapies only slow but do not prevent the progression of DKD. Thus, there is an urgent need to develop novel therapy to halt the progression of DKD and improve disease prognosis.

View Article and Find Full Text PDF

Sulforaphane has been investigated in human pathologies and preclinical models of airway diseases. To provide further mechanistic insights, we explored L-sulforaphane (LSF) in the ovalbumin (OVA)-induced chronic allergic airways murine model, with key hallmarks of asthma. Histological analysis indicated that LSF prevented or reversed OVA-induced epithelial thickening, collagen deposition, goblet cell metaplasia, and inflammation.

View Article and Find Full Text PDF

The lack of effective treatments for mitochondrial disease has seen the development of new approaches, including those that stimulate mitochondrial biogenesis to boost ATP production. Here, we examined the effects of deoxyribonucleosides (dNs) on mitochondrial biogenesis and function in Short chain enoyl-CoA hydratase 1 (ECHS1) 'knockout' (KO) cells, which exhibit combined defects in both oxidative phosphorylation (OXPHOS) and mitochondrial fatty acid β-oxidation (FAO). DNs treatment increased mitochondrial DNA (mtDNA) copy number and the expression of mtDNA-encoded transcripts in both CONTROL (CON) and ECHS1 KO cells.

View Article and Find Full Text PDF

Short-chain enoyl-CoA hydratase 1 (ECHS1) is involved in the second step of mitochondrial fatty acid β-oxidation (FAO), catalysing the hydration of short-chain enoyl-CoA esters to short-chain 3-hyroxyl-CoA esters. Genetic deficiency in ECHS1 (ECHS1D) is associated with a specific subset of Leigh Syndrome, a disease typically caused by defects in oxidative phosphorylation (OXPHOS). Here, we examined the molecular pathogenesis of ECHS1D using a CRISPR/Cas9 edited human cell 'knockout' model and fibroblasts from ECHS1D patients.

View Article and Find Full Text PDF

Mitochondrial dysfunction is implicated in the development of cardiomyopathy and heart failure. Transcription of mitochondrial DNA (mtDNA) encoded genes and subsequent protein synthesis are tightly regulated by nuclear DNA (nDNA) encoded proteins forming the nDNA-mtDNA axis. The scale of abnormalities in this axis in dilated cardiomyopathy (DCM) is unclear.

View Article and Find Full Text PDF

In this study, we define and validate a state of postoperative systemic inflammatory dysregulation (PSID) based on postoperative phenotypic extremes of plasma C-reactive protein concentration following major abdominal surgery. PSID manifested clinically with significantly higher rates of sepsis, complications, longer hospital stays and poorer short, and long-term outcomes. We hypothesized that PSID will be associated with, and potentially predicted by, altered patterns of genome-wide peripheral blood mononuclear cell differential DNA methylation and gene expression.

View Article and Find Full Text PDF

MicroRNA-101-3p (miR-101-3p) is a tumour suppressor that regulates cancer proliferation and apoptotic signalling. Loss of miR-101-3p increases the expression of the Polycomb Repressive Complex 2 (PRC2) subunit enhancer of zeste homolog 2 (EZH2), resulting in alterations to the epigenome and enhanced tumorigenesis. MiR-101-3p has also been shown to modulate various aspects of cellular metabolism, however little is known about the mechanisms involved.

View Article and Find Full Text PDF

Introduction: A potential role for the orphan G protein-coupled receptor, GPR21, in linking immune cell infiltration into tissues and obesity-induced insulin resistance has been proposed, although limited studies in mice are complicated by non-selective deletion of .

Research Design And Methods: We hypothesized that a -selective knockout mouse model, coupled with type 2 diabetes patient samples, would clarify these issues and enable clear assessment of GPR21 as a potential therapeutic target.

Results: High-fat feeding studies in mice revealed improved glucose tolerance and modest changes in inflammatory gene expression.

View Article and Find Full Text PDF

Mitochondrial dysfunction facilitates heart failure development forming a therapeutic target, but the mechanism involved remains unclear. We studied whether the Hippo signaling pathway mediates mitochondrial abnormalities that results in onset of dilated cardiomyopathy (DCM). Mice with DCM due to overexpression of Hippo pathway kinase Mst1 were studied.

View Article and Find Full Text PDF

Erroneous conversion of gene names into other dates and other data types has been a frustration for computational biologists for years. We hypothesized that such errors in supplementary files might diminish after a report in 2016 highlighting the extent of the problem. To assess this, we performed a scan of supplementary files published in PubMed Central from 2014 to 2020.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) remains the number one cause of end-stage renal disease in the western world. In experimental diabetes, mitochondrial dysfunction in the kidney precedes the development of DKD. Reactive 1,2-dicarbonyl compounds, such as methylglyoxal, are generated from sugars both endogenously during diabetes and exogenously during food processing.

View Article and Find Full Text PDF

Intake of processed foods has increased markedly over the past decades, coinciding with increased microvascular diseases such as chronic kidney disease (CKD) and diabetes. Here, we show in rodent models that long-term consumption of a processed diet drives intestinal barrier permeability and an increased risk of CKD. Inhibition of the advanced glycation pathway, which generates Maillard reaction products within foods upon thermal processing, reversed kidney injury.

View Article and Find Full Text PDF

Background: Despite in-depth knowledge of the molecular mechanisms controlling embryonic heart development, little is known about the signals governing postnatal maturation of the human heart.

Methods: Single-nucleus RNA sequencing of 54 140 nuclei from 9 human donors was used to profile transcriptional changes in diverse cardiac cell types during maturation from fetal stages to adulthood. Bulk RNA sequencing and the Assay for Transposase-Accessible Chromatin using sequencing were used to further validate transcriptional changes and to profile alterations in the chromatin accessibility landscape in purified cardiomyocyte nuclei from 21 human donors.

View Article and Find Full Text PDF