Purpose: Single vocal cord irradiation (SVCI) is a promising technique to maintain excellent oncologic control and potentially improve upon toxicities for treatment of early-stage glottic squamous cell carcinomas. We sought to investigate whether pencil beam scanning (PBS) proton therapy could improve upon the already favorable dose gradients demonstrated with volumetric modulated arc therapy (VMAT) SVCI.
Patients And Methods: A 64-year-old gentleman was treated in our department with 6X-flattening filter-free VMAT SVCI to 58.
Purpose: A higher minimum monitor unit (minMU) for pencil-beam scanning proton beams in intensity-modulated proton therapy is preferred for more efficient delivery. However, plan quality may be compromised when the minMU is too large. This study aimed to identify the optimal minMU (OminMU) to improve plan delivery efficiency while maintaining high plan quality.
View Article and Find Full Text PDFPurpose: Noncoplanar plans (NCPs) are commonly used for proton treatment of bilateral head and neck (HN) malignancies. NCP requires additional verification setup imaging between beams to correct residual errors of robotic couch motion, which increases imaging dose and total treatment time. This study compared the quality and robustness of NCPs with those of coplanar plans (CPs).
View Article and Find Full Text PDFPurpose: To assess treatment planning system (TPS) accuracy in estimating the stopping-power ratio (SPR) of immobilization devices commonly used in proton therapy and to evaluate the dosimetric effect of SPR estimation error for a set of clinical treatment plans.
Methods: Computed tomography scans of selected clinical immobilization devices were acquired. Then, the water-equivalent thickness (WET) and SPR values of these devices based on the scans were estimated in a commercial TPS.
Purpose: Our previous work demonstrated that 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (F-DOPA) positron emission tomography (PET) is sensitive and specific for identifying regions of high density and biologically aggressive glioblastoma. The purpose of this prospective phase 2 study was to determine the safety and efficacy of biologic-guided, dose-escalated radiation therapy (DERT) using F-DOPA PET in patients with glioblastoma.
Methods And Materials: Patients with newly diagnosed, histologically confirmed glioblastoma aged ≥18 years without contraindications to F-DOPA were eligible.
Purpose/objective(s): With reports of CNS toxicity in patients treated with proton therapy at doses lower than would be expected based on photon data, it has been proposed that heavy monitor unit (MU) weighting of pencil beam scanning (PBS) proton therapy spots may potentially increase the risk of toxicity. We evaluated the impact of maximum MU weighting per spot (maxMU/spot) restrictions on PBS plan quality, prior to implementing clinic-wide maxMU/spot restrictions.
Materials/methods: PBS plans of 11 patients, of which 3 plans included boosts, for a total of 14 PBS sample cases were included.
We demonstrate that an achiral stretching force transforms disk-shaped colloidal membranes composed of chiral rods into twisted ribbons with handedness opposite the preferred twist of the rods. Using an experimental technique that enforces torque-free boundary conditions we simultaneously measure the force-extension curve and the ribbon shape. An effective theory that accounts for the membrane bending energy and uses geometric properties of the edge to model the internal liquid crystalline degrees of freedom explains both the measured force-extension curve and the force-induced twisted shape.
View Article and Find Full Text PDFIn the presence of a non-adsorbing polymer, monodisperse rod-like colloids assemble into one-rod-length thick liquid-like monolayers, called colloidal membranes. The density of the rods within a colloidal membrane is determined by a balance between the osmotic pressure exerted by the enveloping polymer suspension and the repulsion between the colloidal rods. We developed a microfluidic device for continuously observing an isolated membrane while dynamically controlling the osmotic pressure of the polymer suspension.
View Article and Find Full Text PDFPurpose: Nasobiliary high-dose-rate (HDR) brachytherapy has emerged as an effective tool to boost the radiation dose for patients with unresectable perihilar cholangiocarcinoma. This work describes a quality assurance (QA) tool for measuring the HDR afterloader's performance, including the transit dose, when the source wire travels through a tortuous nasobiliary catheter path.
Methods And Materials: The nasobiliary QA device was designed to mimic the anatomical path of a nasobiliary catheter, including the nasal, stomach, duodenum, and bile duct loops.
We study edge fluctuations of a flat colloidal membrane comprised of a monolayer of aligned filamentous viruses. Experiments reveal that a peak in the spectrum of the in-plane edge fluctuations arises for sufficiently strong virus chirality. Accounting for internal liquid crystalline degrees of freedom by the length, curvature, and geodesic torsion of the edge, we calculate the spectrum of the edge fluctuations.
View Article and Find Full Text PDFEstablishing precise control over the shape and the interactions of the microscopic building blocks is essential for design of macroscopic soft materials with novel structural, optical and mechanical properties. Here, we demonstrate robust assembly of DNA origami filaments into cholesteric liquid crystals, one-dimensional supramolecular twisted ribbons and two-dimensional colloidal membranes. The exquisite control afforded by the DNA origami technology establishes a quantitative relationship between the microscopic filament structure and the macroscopic cholesteric pitch.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2017
In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length-thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist.
View Article and Find Full Text PDFCoalescence is an essential phenomenon that governs the equilibrium behaviour in a variety of systems from intercellular transport to planetary formation. In this report, we study coalescence pathways of circularly shaped two-dimensional colloidal membranes, which are one rod-length-thick liquid-like monolayers of aligned rods. The chirality of the constituent rods leads to three atypical coalescence pathways that are not found in other simple or complex fluids.
View Article and Find Full Text PDFFrom determining the optical properties of simple molecular crystals to establishing the preferred handedness in highly complex vertebrates, molecular chirality profoundly influences the structural, mechanical and optical properties of both synthetic and biological matter on macroscopic length scales. In soft materials such as amphiphilic lipids and liquid crystals, the competition between local chiral interactions and global constraints imposed by the geometry of the self-assembled structures leads to frustration and the assembly of unique materials. An example of particular interest is smectic liquid crystals, where the two-dimensional layered geometry cannot support twist and chirality is consequently expelled to the edges in a manner analogous to the expulsion of a magnetic field from superconductors.
View Article and Find Full Text PDF