Engineering the plant immune system offers genetic solutions to mitigate crop diseases caused by diverse agriculturally significant pathogens and pests. Modification of intracellular plant immune receptors of the nucleotide-binding leucine-rich repeat (NLR) receptor superfamily for expanded recognition of pathogen virulence proteins (effectors) is a promising approach for engineering disease resistance. However, engineering can cause NLR autoactivation, resulting in constitutive defense responses that are deleterious to the plant.
View Article and Find Full Text PDFCRISPR/Cas has been established for targeted mutagenesis in many plant species since 2013, including Brassica napus and Brassica oleracea. Since that time, improvements have been made in terms of efficiency and choice of CRISPR systems. This protocol encompasses improved Cas9 efficiency and an alternative Cas12a system, allowing more challenging and diverse editing outcomes to be achieved.
View Article and Find Full Text PDFPlant nucleotide-binding domain, leucine-rich repeat receptor (NLR) proteins play important roles in recognition of pathogen-derived effectors. However, the mechanism by which plant NLRs activate immunity is still largely unknown. The paired Arabidopsis NLRs RRS1-R and RPS4, that confer recognition of bacterial effectors AvrRps4 and PopP2, are well studied, but how the RRS1/RPS4 complex activates early immediate downstream responses upon effector detection is still poorly understood.
View Article and Find Full Text PDFInventors in the field of mechanical and electronic engineering can access multitudes of components and, thanks to standardization, parts from different manufacturers can be used in combination with each other. The introduction of BioBrick standards for the assembly of characterized DNA sequences was a landmark in microbial engineering, shaping the field of synthetic biology. Here, we describe a standard for Type IIS restriction endonuclease-mediated assembly, defining a common syntax of 12 fusion sites to enable the facile assembly of eukaryotic transcriptional units.
View Article and Find Full Text PDFPlant Synthetic Biology requires robust and efficient methods for assembling multigene constructs. Golden Gate cloning provides a precision module-based cloning technique for facile assembly of multiple genes in one construct. We present here a versatile resource for plant biologists comprising a set of cloning vectors and 96 standardized parts to enable Golden Gate construction of multigene constructs for plant transformation.
View Article and Find Full Text PDFThe growth and motility factor hepatocyte growth factor/scatter factor (HGF/SF) and its receptor MET, the tyrosine kinase encoded by the c-MET proto-oncogene, exert major roles in cancer invasion and metastasis and are key targets for therapy. NK1 is an alternative spliced variant of HGF/SF that consists of the N-terminal (N) and first kringle (K1) domains and has partial agonistic activity. NK1 crystallizes as a head-to-tail dimer with an extensive inter-protomeric interface resulting from contacts between the two short interdomain linkers and reciprocal contacts between the N and K1 domains.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2006
The polypeptide growth factor, hepatocyte growth factor/scatter factor (HGF/SF), shares the multidomain structure and proteolytic mechanism of activation of plasminogen and other complex serine proteinases. HGF/SF, however, has no enzymatic activity. Instead, it controls the growth, morphogenesis, or migration of epithelial, endothelial, and muscle progenitor cells through the receptor tyrosine kinase MET.
View Article and Find Full Text PDFLittle is known about the large ectodomain of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor (HGF/SF). Here, we establish by deletion mutagenesis that the HGF/SF and heparin-binding sites of MET are contained within a large N-terminal domain spanning the alpha-chain (amino acids 25-307) and the first 212 amino acids of the beta-chain (amino acids 308-519). Neither the cystine-rich domain (amino acids 520-561) nor the C-terminal half of MET (amino acids 562-932) bind HGF/SF or heparin directly.
View Article and Find Full Text PDF