Background: The use of in silico simulations as a basis for designing artificial biological systems (and experiments to characterize them) is one of the tangible differences between Synthetic Biology and "classical" Genetic Engineering. To this end, synthetic biologists have adopted approaches originating from the traditionally non-biological fields of Nonlinear Dynamics and Systems & Control Theory. However, due to the complex molecular interactions affecting the emergent properties of biological systems, mechanistic descriptions of even the simplest genetic circuits (transcriptional feedback oscillators, bi-stable switches) produced by these methods tend to be either oversimplified, or numerically intractable.
View Article and Find Full Text PDFMob Genet Elements
September 2011
Horizontal gene transfer constitutes a powerful and innovative force in evolution, but often little is known about the actual origins of transferred genes. Sequence alignments are generally of limited use in tracking the original donor, since still only a small fraction of the total genetic diversity is thought to be uncovered. Alternatively, approaches based on similarities in the genome specific relative oligonucleotide frequencies do not require alignments.
View Article and Find Full Text PDFMucins are a family of heavily glycosylated proteins that are the major organic components of the mucus layer, the protective layer covering the epithelial cells in many human and animal organs, including the entire gastro-intestinal tract. Microbes that can associate with mucins benefit from this interaction since they can get available nutrients, experience physico-chemical protection and adhere, resulting in increased residence time. Mucin-degrading microorganisms, which often are found in consortia, have not been extensively characterized as mucins are high molecular weight glycoproteins that are hard to study because of their size, complexity and heterogeneity.
View Article and Find Full Text PDF