Publications by authors named "Mark Wildie"

Modular networks of delay-coupled and pulse-coupled oscillators are presented, which display both transient (metastable) synchronization dynamics and the formation of a large number of "chimera" states characterized by coexistent synchronized and desynchronized subsystems. We consider networks based on both community and small-world topologies. It is shown through simulation that the metastable behaviour of the system is dependent in all cases on connection delay, and a critical region is found that maximizes indices of both metastability and the prevalence of chimera states.

View Article and Find Full Text PDF

A network measure called knotty-centrality is defined that quantifies the extent to which a given subset of a graph's nodes constitutes a densely intra-connected topologically central connective core. Using this measure, the knotty centre of a network is defined as a sub-graph with maximal knotty-centrality. A heuristic algorithm for finding subsets of a network with high knotty-centrality is presented, and this is applied to previously published brain structural connectivity data for the cat and the human, as well as to a number of other networks.

View Article and Find Full Text PDF

Experimental evidence suggests that spontaneous neuronal activity may shape and be shaped by sensory experience. However, we lack information on how sensory experience modulates the underlying synaptic dynamics and how such modulation influences the response of the network to future events. Here we study whether spike-timing-dependent plasticity (STDP) can mediate sensory-induced modifications in the spontaneous dynamics of a new large-scale model of layers II, III and IV of the rodent barrel cortex.

View Article and Find Full Text PDF

The role of gamma frequency oscillation in neuronal interaction, and the relationship between oscillation and information transfer between neurons, has been the focus of much recent research. While the biological mechanisms responsible for gamma oscillation and the properties of resulting networks are well studied, the dynamics of changing phase coherence between oscillating neuronal populations are not well understood. To this end we develop a computational model of competitive selection between multiple stimuli, where the selection and transfer of population-encoded information arises from competition between converging stimuli to entrain a target population of neurons.

View Article and Find Full Text PDF